EEEEEEEEEEEEEEEEEE
IIIIIIIIIIIIIIIIIII

I
Homomorphic Encryption
CS523 2025 -
i

Sylvain Chatel | March 04, 2025 | v1.0.2

Some slides/ideas adapted from C. Mouchet, D. Fiore, JP Hubaux, C. Troncoso, and W. Lueks

Introduction |
Homomorphic encryption

Lecture aim: study the cryptographic technique and related
toolbox for privacy engineering

Application Layer

tool cryptographic
for building PETS primitive

Goals
What should you learn today?

= Basic understanding of homomorphic encryption
= Understand when to use homomorphic encryption

= Understand key properties:
« Communication and computation cost
« Trust assumptions
« Guarantees with respect to inputs

= Understand practical issues when using homomorphic encryption

Introduction
Encryption

Alice Bob

Encryption aims at data confidentiality
In transit
In storage

Introduction
Encryption -
-

"t "t

& Encrypt “ Decrypt I

Alice Bob

Encryption aims at data confidentiality
In transit
In storage
Homomorphic Encryption aims at also confidentiality in computation

Introduction
Encryption

Encryption aims at data confidentiality
In transit
In storage
Homomorphic Encryption aims at also confidentiality in computation

: : Govt Data: e.g.,
Health D.ata Financial Eraud demographics,
Analysis Prevention
vote, etc.

Overview

Homomorphic encryption

= A cryptographic primitive that enables
the computation of functions in the
encrypted domain

Input: Enc(x

| R
AnceK Q)

Server

Output: Enc(F(x))
Untrusted party

privacy-wise
(typically a cloud)

Overview

Homomorphic encryption

= A cryptographic primitive that enables
the computation of functions in the
encrypted domain

Input: Enc(x

= Security property: the computing
\ party cannot learn any information
(ﬁ) about the input or output
Alice ca) = Correctness: output is correct
K Server = Threat Model: usually Honest-but-
Output: Enc(F(x)) Curious

Untrusted party
privacy-wise
(typically a cloud)

Overview |
Homomorphic Encryption System Model

Homomorphic encryption: classically, has one computing party, and
« one party providing the input and reading the result, or

Server

10

Overview |
Homomorphic Encryption System Model

Homomorphic encryption: classically, has one computing party, and
« one party providing the input and reading the result, or
* n parties providing the input and another reading the result, or
« n parties providing data and learning the result (not in this class)

Server

Server

What about Alternatives?

NDAs, SMC, TEE

5]

/Non-DiscIosure\

Agreements

i
X |

Low tech

Lengthy Process

Limited protection

\ /

2
Pyt

N1

@ecret Sharing}
SMC

Non-collusion assumption

If they do, they can
join their shares and
recover all the secrets!

Hard to find in practice

o /

/ Trusted

/ AdOWIW

Execution Env.

Trust in manufacturer

Can be vulnerable to
physical attacks

N

/

Homomorphic Encryption “
Objectives Consolidated

QQ Enable computation on encrypted data
- Computation performed before decryption
- Decryption key known only to the receiver

&: Outsourced computation setting: party with data provides an

encrypted version of the data to a single untrusted computation
party (a server). No need for a non-collusion assumption.

Rely on solely on the security of the cryptographic primitives

\

Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al.

Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

|
1985, El Gamal

|
1999, Paillier

RSA 1977: modular multiplication
Goldwasser-Micali: XOR

El Gamal: modular multiplication
Paillier: modular addition

v

14

Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

|
1985, El Gamal

|
1999, Paillier

2009, Gentry

»
>

15

Homomorphic Encryption
HIStory

Privacy Homomorphism

»

1978 Rivest et al. 1982, Goldwasser-Micali 2009, Gentry

1985, El Gamlal 2011-Present , RLWE Constructions

1999, Paillier

- Lattice-based schemes (e.g., BGV, BFV, CGGI, CKKS)
- Many libraries (e.g., Helib, SEAL, HEAAN, PALISADE, OpenFHE, Lattigo, TFHE-rs.
- Standardization 2017-soon

16

https://homomorphicencryption.org/

Homomorphic Encryption
Applications

S Swift

ZANA

17

Announcing Swift
Homomorphic Encryption

JULY 30, 2024

Zama's fhEVM Coprocessor is now available

Zama's fhEVM

o (&] e TUNE INSIGHT Privacy-Preserving Federated Learning A simple and powerful solution for building

decentralized apps with full privacy and
We're excited to announce a new open source Swift package for

homomorphic encryption in Swift: confidentiality on Ethererum leveraging Fully

Homomorphic encryption (HE) is a cryptographic technique that Secu re Fed erated Lea I'n I ng WIt h Homomorphlc Encryption (FHE)-
enables computation on encrypted data without revealing the .

underlying unencrypted data to the operating process. It provides TU ne I nS I g ht encrypted

a means for clients to send encrypted data to a server, which .

operates on that encrypted data and returns a result that the com pUt I ng p I atform © See the code
client can decrypt. During the execution of the request, the server

itself never decrypts the original data or even has access to the “ Tune |nsight

decryption key. Such an approach presents new opportunities for . 2,528 followers @ fieadiielcocs

cloud services to operate while protecting the privacy and security
of a user’s data, which is obviously highly attractive for many November 21, 2023

. Ready to use FHE for your business? Talk to our team.
scenarlos.

Apple Live Caller ID - 10518 Tune Insight Federated Zama confidentiality for
Learning Etherium

Example application
Privacy-preserving statistics on medical data

Hosp|tals

(4]

Stat|st|c:|an

"’ Eﬂ(\

= Goal: a statistician wants to compute statistics on joint data from several hospitals
= Privacy concern: single data entries are privacy-sensitive patients’ data
= Using a cloud server and FHE

Hospitals store encrypted patients’ data on the cloud o
Cloud compute statistics on joint (encrypted) datasets. Statistician decrypts results

18

Definitions and

Properties

Formal definition
Cryptographic Notation

21

Alice
& xBOb

Key: sk Key: sk
Inputm _ e sk) Output:m = Dec(sk,c)
&

Symmetric encryption:
parties share the same secret key sk

‘ Bob

Output: m = Dec(sk,c)
Key: sk

>

Public key encryption (PKE): parties have a

secret key sk (sometimes: decryption key) and a
public key pk (sometimes: encryption key)

I Alice

Input: m

Key: pk ¢ = Enc(pk, m)

KeyGen(1¥)—(sk, pR)
Enc(pk, m; n—c
Dec(sk, ¢)—m

Generates a private/public key pair for a security parameter k
Encrypt the message m with randomness r to a ciphertext c
Decrypt a ciphertext m to obtain the message m

Formal definition |
Homomorphic encryption

A homomorphic encryption scheme is given by the following four algorithms:

KeyGen(1¢)->(sk, pR) Generates a private/public Rey pair for a security parameter k
Enc(pk, m; r)=>c Encrypt the message m with randomness r to a ciphertext ¢
Dec(sk, ¢)->m Decrypt a ciphertext ¢ to obtain the message m

Eval(pk, f, ¢;,...,€p)>C’

Evaluate function f on the encrypted input c; to obtain
a new ciphertext ¢’

Eval() is what makes HE different from standard PK encryption

22

Properties |
Homomorphic encryption

Correctness
- =4
Security -— M -—
Evaluation correctness & Encrypt “ Decrypt 1
Alice Bob

Composition

Compactness

Homomorphic Encryption
Encryption Correctness

Correctness — intuition:

Enc(pk,-)

Dec(sk,)

Homomorphic Encryption
Encryption Correctness

Correctness - intuition: applying the deterministic decryption

function to the randomized encryption always returns the initial

plaintext.

Correctness. | a_

V re Rand, v m € P and (sk, pk)<KeyGen(1¥):
Dec(sk, Enc(pk, m; r)) =m

Enc(pk,-)

Dec(sk,)

Homomorphic Encryption
Homomorphic Correctness

Objective: Evaluate the plaintext function f over the encryption in the

ciphertext space

Recall an HE scheme:
KeyGen(1¥)—(sR, pR)
Enc(pk, m; n— ¢
Dec(sk, ¢)—m
Eval(pk, f, C)—>Cf()

- » C

Enc(pk,-)

Eval(pR,f, c)

f(m)+—

Dec(sR, -)

- €f(m)

Homomorphic Encryption
Wait... Homomorphic?

Homomorphism: mapping between two sets that preserves their
algebraic structure

Group homomorphism
Given two groups (G, +), (H, X)

h: G >H is a group-homomorphism if vx, y € G:

h(x+y)=h(x) X h(y)

For an additive HE scheme, Dec(sk, -): € = Pis an homomorphism between
(¢, Eval.Add) and (P, +)

27

28

Homomorphic Encryption
Homomorphic Correctness

Objective: Evaluate the plaintext function f over the encryption in the
ciphertext space

For a set F of admissible functions

vme?P, vfe F, and m —Enc(lpk) > C

k, pk) < KeyGen(1¥): |
(sk, pk)<KeyGen(1¥) f i Eval(pk,f, €)
Dec(sk, Eval(pk, f, Enc(pk, m))) = f(m) f(m)«—Dec(sk, J—¢ f(m)

This definition is
relaxed in practice

Homomorphic Encryption
Security

Security - intuition:

Homomorphic Encryption "
Security

Security - intuition: The adversary learns nothing from the
ciphertexts and public keys

How do we capture this?

Game-based security definition: method to capture a security definition
using a game between an adversary and a challenger. If the adversary

has a non-negligible advantage to win the game, the adversary “breaks”
the security property.

Semantic security (IND-CPA) of
Homomorphic encryption

Game-based security: is a method to capture a security definition using a game between an adversary
and a challenger. If the adversary wins the game, the adversary “breaks” the security property.

sk, pk& pR > (ﬁ‘ pR (Sk, pR)<KeyGen(1k)
[

(my, m,)¢ A(pR) // adversary chooses two messages

Alice) mo, mi
b—{0,1}) b<{0,1}; // random bit is chosen
) Enc(pR, m) . c<Enc(pk, mb) // message b is encrypted
A) b’ b'¢ Al(c) // adversary must figure out b
|L|f b’=b adversary wins :l Semantic security - intuition

seeing encryption of messages

does not give the adversary

Semantic security. HE is secure if 2-Pr[b’ = b] = negl(k) |
guessing the encrypted message

better than random guess

Homomorphic Encryption
s this an HE scheme?

Consider the following scheme built on top of a IND-CPA secure PKE scheme:

1.
2.
3.

KeyGen(1¥) = PKE.KeyGen(1¥)

Enc(pk, m) = {cpkg = PKE.Enc(pk, m); return c=(cpkg. nil)}
Eval(pr, f, ¢) = {cpkg = ¢l[0]; return (cpkg,)}

Dec(sk, ¢) = {cpkE, f < ¢; return f(PKE. Dec(sk, cpkg))}

Is it correct Encryption scheme?
Is it IND-CPA secure?
Is it useful?

32

Homomorphic Encryption
s this an HE scheme?

Consider the following scheme built on top of a IND-CPA secure PKE scheme:

1.
2.
3.

KeyGen(1¥) = PKE.KeyGen(1¥)
Enc(pk, m) = {cpkg = PKE.Enc(pk, m); return c=(cpkg. nil)}
Eval(pr, f, ¢) = {cpkg = ¢l[0]; return (cpkg,)}

Dec(sRk, ¢) = {epkE. f < c; return f(PKE. Dec(sk, cpkg))}

Is it correct Encryption scheme? Yes, straightforward from the decryption
Is it IND-CPA secure? Yes, as it would break the IND-CPA from PKE
Is it useful? No, the evaluation of f is performed at decryption...

33

34

Homomorphic Encryption
Compactness

Compactness - intuition: the ciphertext size should not be growing
through homomorphic operations

Compactness. HE compactly evaluates a family of functions F if
V(sk, pR)¢<KeyGen(1¥), vfeF, vmeP:
There exists a polynomial p() such that the size of

|Eval(pk,f,c,,...,c,) < p(k), with k the security parameter, independent of f();

i.e., the complexity of Dec is independent of f().

This definition is
relaxed in practice

35

Homomorphic Encryption
Composition

Composition - intuition: Build HE computation from a set of
simple operation (think Circuits and CPU)

Define Eval as circuit of simple “gates”. E.g., Boolean Algebra

X0 X1 AND(Xo,Xl)
010 0 X
0 —]
01 0 X0 — AND
110 0 xi —|AND)— X T
1|1 1 Eval. AND
xo | x1 | OR(x0,x1))8));1 OR(AND(goaxl)axl)
010 0 0 . X
0] 1 1 X0
1[0 1 x| Y 1|0 0
11 1 Eval.OR 1)1 1

Figure copied from Christian Mouchet’s Course on Computing on Encrypted Data — HPI 2024

36

Homomorphic Encryption
Composition

Composition - intuition: Build HE computation from a set of
simple operation (think Circuits and CPU)

vfe F,f: P > P, v (m,,..., m,) € P", (sk, pk)«KeyGen(1), and Vi €[n] ¢; = Enc(pk, m;)

- Correctness for n-ary functions:
Dec(sk, Eval(pk, f, cs,...,€,) = f(m4, ..., my,)
- Composability:
Dec(sk, Eval(pR, f, ¢4,...,c,) = f(Dec(sk, ¢y), ..., Dec(sk, c,))

Informally extends correctness to any valid ciphertext (fresh or Eval)

Homomorphic Encryption
summary of the properties

vfe F,f: PN - P, v (m,,.., m,) € P,
(sk, pk)¢<KeyGen(1k), and Vi €[n] ¢; = Enc(pk, m))

Correctness
Dec(sk, Enc(pk, m;)) = f(m,)
IND-CPA Security
Adv {174 = negl(k)
Evaluation correctness and composition
Dec(sk, Eval(pk, f, c;,...,c,) = f(m,, ..., m,)
Dec(sk, Eval(pk, f, c,,...,c,) = f(Dec(sk, ¢cy), ..., Dec(sk, c,))
Compactness
|Eval(pk,f,c,,...,c,) < p(k) for p polynomial Independent of f

37

HE scheme:

KeyGen(1¥)—(sR, pR)
Enc(pk, m; n— ¢

Dec(sR,

Eval(pk, f, €1,....en)—=c¢f)

c)—m

M «<—— Enc/Dec —— ¢
f Eval(pk £, c)
f(m)«— Dec/Enc

€ fm)

Constructions

Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

|
1985, El Gamal

|
1999, Paillier

We will cover

-—RSA

- El Gamal
m

- RLWE

|| :
2009, Gentry

2011-Present, RLWE Constructions

39

El Gamal Encryption
Properties

ElGamal(G, g):

Let G be a cyclic group of order g=|G|
generated by g

KeyGen—(sR, pR):
sk «—${1,..., g-1}, pk=gSR
Enc(pk, me G)— ¢
r—%${1,..., g-1}
c:= (m-pk',g"

Dec(sk, ¢)—m

m = c[0] /e[1]°F

Security - Security from the Discrete Logarithm:
Given g and y = g* mod p, find x

Correctness —

Evaluation - Component-wise

Compact -

40

El Gamal Encryption "
Properties

Security - Security from the Discrete Logarithm:

ElGamal(G, g): Given g and y = g* mod p, find x

Let G be a cyclic group of order g=|G|
generated by g

Correctness - Follows by definition
KeyGen—(sR, pR): Dec(sk, Enc(pk, m)) = Dec(sk, (m - pk", g"))

sk —${1,..., g-1}, pk=gSR =m-pk"- (g Sk =m- g"Sk. (g)=sk = m
Evaluation - Component-wise

Enc(pk, me G)— ¢
r—%${1,..., g-1}
c:=(m-pk', g"

Dec(sk, ¢)—m

Compact -
m = ¢[0] /e[1]5R ’

El Gamal Encryption)
Properties

Security - Security from the Discrete Logarithm:

ElGamal(G, g): Given g and y = g* mod p, find x

Let G be a cyclic group of order g=|G|
generated by g

Correctness - Follows by definition

KeyGen—(sk, pR): Dec(sk, Enc(pk, m)) = Dec(sk, (m - pk', g")
sk —${1,..., q-1}, pk=gSk =m-pkF - (gNSR=m.g"R.(g") Sk =m
Evaluation - Component-wise multiplication
Enc(pk, me G)— ¢ ¢,= Enc(pk, m;) and ¢,= Enc(pk, m,)
r—%${1,..., g-1} Mul(cy, €;) = (€,[0] - €2[0], €4 [1] - €;[1])

= (ml . pkrl -m, - pkrz’grl . grz)
=(my;-m, - pkr1+r2'gr1+rz)=c
DeC(Sk, C) = ml : m2

c:=(m-pk',g")

Dec(sk, ¢)—m

Compact -
m = ¢[0] /e[1]5R ’

El Gamal Encryption ’
Properties

Security - Security from the Discrete Logarithm:

ElGamal(G, g): Given g and y = g* mod p, find x

Let G be a cyclic group of order g=|G|
generated by g

Correctness - Follows by definition

KeyGen—(sk, pR): Dec(sk, Enc(pk, m)) = Dec(sk, (m - pk', g")
sk —${1,..., q-1}, pk=gSk =m-pkF - (gNSR=m.g"R.(g") Sk =m
Evaluation - Component-wise multiplication
Enc(pk, me G)— ¢ ¢,= Enc(pk, m;) and ¢,= Enc(pk, m,)
r—%${1,..., g-1} Mul(cy, €;) = (€,[0] - €2[0], €4 [1] - €;[1])

= (ml . pkrl -m, - pkrz’grl . grz)
=(my;-m, - pkr1+r2'gr1+rz)=c
DeC(Sk, C) = ml : m2

c:=(m-pk',g")

Dec(sk, ¢)—m

m = ¢[0] /e[1] Sk Compact - yes

Additive El Gamal Encryption)

Properties

AddEIGamal(G, g):

Let G be a cyclic group of order gq=|G|
generated by g

KeyGen—(sk, pR):
sk —${1,..., g-1}, pk=gSR

Enc(pk, me G)— ¢
r —%${1,..., g-1}
c:= (g™ pk',g"

Dec(sk, ¢)—m
m = log, (c[0] /c[115R)

Useful plaintext space:

(Z ,,, +) closed additive group of integers modulo n.

Supports any linear combination:
f(x1, e Xp) = ey 8 - x; mod n
We encode the plaintext in the exponent m — g

¢,;= Enc(pk, m;) and ¢,= Enc(pk, m,)
Mul(cy, ¢;) = (¢,[0] - ¢;[0], ¢1[1] - €;[1])

= (gm1 . pkr1 . gmz .pkrz’grl .grz)
= (gm1+m2 ,pkr1+r2’gr1+r2)=c

Dec(sk, ¢)=my; + m, -
Not efficient for
general case

Paillier
Properties

Paillier(L):

KeyGen—(sR, pR):
p.q—PL

n = pq
pk=(n,g = n + 1), sk=¢p(n)

Enc(pk, meZ,)— c
r—=7y

¢ == gM.r"* mod n?

R _
Dec(sk, ¢)—>m= (cs m?ld n2)-1

sk~ Imod n

Security — Security from the Decisional Composite
Residuosity assumption:

Evaluation -

Correctness - Uses two facts
1.VX €EZ 2, (x")q)(n) =1 mod n?

2. The base-g DLin Z ;; is easy to
compute

Textbook RSA Encryption

Properties
_ Security - Security based on factoring hardness:
RSA(L): Given n = pg s.t. p,q—P, find p and g
KeyGen—(sk, pk): Equivalent to finding ¢(n)

p,q<—P s.t. log(pq)=L
n=pa e =Ly,
pk=(n,e), sk=e~1 mod ¢(n)

Correctness —

Evaluation -

Enc(pk, m € Z %)— ¢=m® mod n
Dec(sk, ¢)—m=ck mod n

Compact -

Lattice-Based

Constructions

Fully Homomorphic Encryption

48

A simple scheme for intuition

R, = Z,[X]/(XN +1
IdealHE: 0 = Tl)

KeyGen—(sR,-):
SR =5 «$R,

Enc(sk, me R,;)— ¢
a<S$R,
c:=(—a-skR+m, a)

Dec(sk, ¢)—m
m = c[0] +sk - c[1]

Consider the polynomial ring R, = Z,[X]/(X" + 1)

l.e.,, degree N — 1 polynomials with coefficients in Z,

Idea inspired from Christian Mouchet’s Course on Computing on Encrypted Data — HPI 2024

Fully Homomorphic Encryption
A simple scheme for intuition — Correctness

R = LW/ 1D 1 Consider the polynomial ring R, = Z,[X]/(XN + 1)

l.e.,, degree N — 1 polynomials with coefficients in Z,

IdealHE:

_>(Skr°):
Sk =s < 3Ry Correctness -V ske R, and vV me R,
Dec(sk, Enc(sk, m)) = (—a - sk + m) +sk - a

Sk, me R c
()™ =(—as+m)+s-a=m

a<3$R,
c:=(—a-sSkR+m, a)

(SR, ¢)—m
m = c[0] +sk - c[1]

Fully Homomorphic Encryption
A simple scheme for intuition — Addition

Rq = LX)/ + 1)1 Evaluation - V sk € R, and Vv my,m, € R,

IdealHE:
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
_>(Skr°):

Sk i=s <—$S’2q

(SR, meR,)— ¢
a<3$R,
c:=(—a-sSkR+m, a)

(SR, ¢)—m
m = c[0] +sk - c[1]

51

Fully Homomorphic Encryption
A simple scheme for intuition — Addition

IdealHE: Rq = LX)/ + 1)1 Evaluation - V sk € R, and Vv my,m, € R,
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
—(sR,"):
sk =5 < 3R, - Addition
¢, +¢,=(—a; sk +my,ay) + (—a, - Sk + m,,a,)

(sk, meR,)— ¢ =(—a, SR +my —a, sk + m,,a, + a,)
a < $Rq = (—(a;+ay)-skR +my+m,,a; + a,
c:=(—a-sk+m, a) = (=b - SR + My + My, bygy) With bygy = a; + ay

(sk, €)—m ¢, + ¢, = Enc(sk, m; + m,)

m = c[0] +sk - c[1] So Add(¢,, ¢c,)=c¢; + ¢,

53

Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

dealHE- Rq = LX)/ + 1) 1 Evaluation - V sk € R, and ¥ my, m, € R,
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
_)(r'):
=5 <R, - Multiplication?
€€ =(—ay SR +my,aq) - (—ay-sk +my,,ay)
(SR, me R,)— ¢ = ((—a;-sk +my)-(—a,-sk + m,),a, - a,)
a<3$R, = sk?a,a, — sk(aym, + mya,) + mym,,a, - a,)
C = (—Cl : + m, (1)
(sk, €)—m Cross-terms that cannot be reconstructed at
m = c[0] +sk - ¢[1] decryption!

54

Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

dealHE- Rq = LX)/ + 1) 1 Evaluation - V sk € R, and ¥ my, m, € R,
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
_)(r'):
=5 <R, - Multiplication?
€€ =(—ay SR +my,aq) - (—ay-sk +my,,ay)
(SR, me R,)— ¢ = ((—a;-sk +my)-(—a,-sk + m,),a, - a,)
a<3$R, = sk?a,a, — sk(aym, + mya,) + mym,,a, - a,)
C = (—Cl : + m, (1)
(sk, €)—m Cross-terms that cannot be reconstructed at
m = c[0] +sk - ¢[1] decryption!

55

Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

Ry = Zg[X]/ (XN + 1) fon —
ldealHE: q= Lq Evaluation -V ske R, andvVm,;,m, € R,
¢,= Enc(sk, m,) and ¢,= Enc(sk, m,)
_)(r'):

=5 < $R, - Multiplication: Tensor product

(SR, meR;)— ¢c ¢;[0] - ¢z[0]
a<$R, c =cyxc, =| €1l0] - €2[1] + €1[1] - €;[0]

c:=(—a-sk+m, a) C1[1] - ¢z[1]

() c)_>m Sl?zcmul _Skbmul + mim,
m = ¢[0] +sk - ¢[1] C =C€1XCy = —2 SRCmur + b
Cmul

Cmul = a1 Ay b = aym, + mia,

56

Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

Evaluation - v sk € R, and vmy, m, € R,
¢, = Enc(sk, m;) and ¢,= Enc(sk, m,)

- Multiplication: Tensor product + Decryption
Sk’zcmul - Skbmul + myms,
C1XCy = —2 SRcpur + b
Crmul

Define Dec’_2(sk, ¢) >m = ¢[0] +sk - c[1]+ sk? - ¢[2]

This extend to larger depth.
: .. iphertext
O Relinearization: converts Chhe

= to degree 1-ciphertext

Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

Compactness - Need for relinearization

We have seen that homomorphic multiplication
increases the size of the ciphertexts.

Relinearization: converts a degree-2 ciphertext c into
a degree-1 ciphertext c’.

Requires: a relinearization Rey rlk = Enc(sk, sk?)

Fully Homomorphic Encryption
A simple scheme for intuition — Summary

R, = Z,[X]/(XN +1
IdealHE: o7 BETED
KeyGen—(sR, rlR):
rlk = Enc(sk, sk?)
Sk =s «$R,

Enc(sk, me R;)— ¢
a<$R,
c:=(—a-SkR+m, a)

Relin(rlk, c) =(c[0], c[1]) + c[2] - rlRk
Dec(sk, ¢)—»m = c[0] +sk - c[1]
Add(cy, c;)=c¢; + ¢,

Mul(c,, ¢,) = Relin(rlk, ¢, xc,)

Correctness -
Evaluation -
Compactness -

Public Key -

Security -

58

Fully Homomorphic Encryption

59

A simple scheme for intuition — Summary

R, = Z,[X]/(XN +1
IdealHE: o7 BlVEEED
KeyGen—(sR, rlR):
rlk = Enc(sk, sk?)
Sk =s «$R,

Enc(sk, me R;)— ¢
a<$R,
c:=(—a-sk+m, a)

Relin(rlk, c) =(c[0], c[1]) + c[2] - rlRk
Dec(sk, ¢)—»m = c[0] +sk - c[1]
Add(cy, c;)=c¢; + ¢,

Mul(c,, ¢,) = Relin(rlk, ¢, xc,)

Correctness - Yes
Evaluation - Additions and Multiplications

Compactness - with relinearization

Public Key - Yes, pk = Enc(sk,0) and u - pk to Enc for u « R,

Security -

Fully Homomorphic Encryption

60

A simple scheme for intuition — Summary

R, = Z,[X]/(XN +1
IdealHE: o7 BETED
KeyGen—(sR, rlR):
rlk = Enc(sk, sk?)
Sk =s «$R,

Enc(sk, me R;)— ¢
a<$R,
c:=(—a-sk+m, a)

Relin(rlk, c) =(c[0], c[1]) + c[2] - rlRk
Dec(sk, ¢)—»m = c[0] +sk - c[1]
Add(cy, c;)=c¢; + ¢,

Mul(c,, ¢,) = Relin(rlk, ¢, xc,)

Correctness - Yes
Evaluation - Additions and Multiplications
Compactness - with relinearization

Public Key - Yes, pk = Enc(sk,0) and u - pk to Enc for u « R,

Security - No! The problem is not hard. We need the
error!

Lattice-Based Homomorphic Encryption
Background on lattices

A lattice is a mathematical object: a subset of R™ that is an additive subgroup and discrete

There exits many problems deemed hard related to lattices

e.g., Shortest Vector Problem: find non-zero vector of low norm [
- Large mathematical objects b,
: b
- Several lattice-based hard problems e ..
- Assumed quantum resistant for e
appropriate parametrization LA
pprop P L = {Zzib,' ’ Zi € Z}
i=1

Figure copied from Christian Mouchet’s Course on
Computing on Encrypted Data — HPI 2024

62

Ring learning with error
Inturtion

Define R, = Z,[X]/(X" + 1) Degree N — 1 polynomials with coefficients in Z,

Given a secret vector s € R, the RLWEZ_ distribution outputs:

(ab) = (a,as +e) € R
whered « R, and e « y m=poly(n), appropriate g, and y of errorrate a < 1

Cannot distinguish between RLWE%_ , and a uniform distribution

Ring learning with error-based FHE scheme
Issue with correctness

FHE:
KeyGen—(sk, -):

Rq = Zg[X1/(XN +1)

a,b <R,

Sk =5 «<$R,

Enc(sk, me R;)—

a<3$R,

C

c=(—a-sk+m, a)

Dec(sk, ¢)—»m = c[0] +sk - c[1]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Idea: add noise everywhere!
(a,b) = (a,as +e) € RZ withd « R, and e « y

Informal: RLWE assumption says this is
indistinguishable from (a,b « $ R,).

Ring learning with error-based FHE scheme
Issue with correctness

R,=Z [X]/(XN+1)
FHE: v
KeyGen—(sk, -): a,b « R,
Sk =5 «<$R,

Enc(sk, me R;)— ¢
a < E];:Rq €enc < X
c=(—a-SR+e:+m, a)

Dec(sk, ¢)—»m = c[0] +sk - c[1]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Idea: add noise everywhere!
(a,b) = (a,as +e) € RZ withd « R, and e « y

Correctness —vske®R,and v me R,
Dec(sk, Enc(sk, m)) = (—a - SR + e . + M) +SkR - a
=(—as+eop.+M)+s-a

= €enctM #M

We need to perform error correction:
1. Message scaling
2. Noise scaling

Ring learning with error-based FHE scheme

Adding error correction - message scaling

Rq = Zg[X1/(XN +1)

FHE:
KeyGen—(sk,): a,b <« R,
Sk =5 «<$R,

Enc(sk, me R;)— ¢
a < $:Rq €enc < X
c:=(—a-SkR+e,.+Am, a)

Dec(sk, ¢)— m
M := ¢[0] +sk - c[1]
m := |M/A]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Let A € Z, be a positive factor less than q.

If A > 2e and Am < g, then the division and
rounding remove the error.

We now have correctness again!

Ring learning with error-based FHE scheme

Adding error correction - message scaling

Ry = Zo[X]/(XV +1)

FHE:

—(sRk,) a,b < R,
=S e$:Rq

(SR, me R,;)— ¢
aP$:Rq €enc < X
c:=(—a-SR+e,+Am, a)

(Sk, €)= m
M := ¢[0] +sk - c[1]
m := |M/A]

Let us look at the impact of the scale A

Consider the following representation of the
polynomial coefficients

Third coefficient
representation

MSB LSB

Ring learning with error-based FHE scheme

Adding error correction - message scaling

Ry = Zy[X1/(XN +1)
FHE:
—(sRk,) a,b < R,

=S e$qu

(SR, me R,;)— ¢
aP$:Rq €enc < X
c=(—a-SR+e,+Am, a)

(Sk, €)= m
M := ¢[0] +sk - c[1]
m := |M/A]

Let us look at the impact of the scale

We display the scaled message m and the
encryption noise e,

Third coefficient
representation

MSB

Ring learning with error-based FHE scheme
Adding error correction — message scaling

R, = Z,[X]/(XN + 1)
FHE: .
—(sRk,) a,b < R,
=S <—$qu

(SR, me R,;)— ¢
a(_$:Rq €enc < X
c=(—a-SR+e,+Am, a)

(Sk, €)= m
M := ¢[0] +sk - ¢[1]
m := |M/A]

Let us look at the impact of the scale

We now add the masking

Third coefficient
representation

MSB LSB

Ring learning with error-based FHE scheme
Adding error correction — message scaling and Ops

q A 0

c;+c,=

€add

The noise growth is linear in the #add in the worst case.

A? A

The noise growth is quadratically in the #mult in the worst case.
Output message scaled by A?

Ring learning with error-based FHE scheme
Adding error correction — message scaling and Ops

q A? A 0

:Rq - Zq[X]/(XN_I_]-) Ci1 X Cy=

€mul

FHE:

—(sRk,) a,b < R,
=S « $:Rq .
What can we do? — Noise management
(SR, meR)—c
aﬁ$j€q €enc < X
c=(—a-SR+ey,.+2Am, a)

(Sk, €)= m
M := ¢[0] +sk - ¢[1]
m := |M/A]

Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Ring learning with error-based FHE scheme

Adding error correction — message scaling and Ops

R,=Z [X]/(XN+1)
FHE: v
KeyGen—(sk,): a,b <« R,
Sk =5 «<$R,

Enc(sk, me R;)— ¢
a < $:Rq €enc < X
c:=(—a-SkR+ec+20m, a)

Dec(sk, ¢)— m
M := ¢[0] +sk - ¢[1]
m := |M/A]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

C X Cy=

q A? A 0

€mul

What can we do? - Noise management

1. Select 4 wisely:
Encrypt messages in R;, t < q.Set A = [%]

q A 0
MSB LSB

2. Rescale from A? needed (multiply by 2 in R)

3. Perform noise refresh: Bootstrapping

\ Yy \
L/

1 NREAEE

Ring learning with error-based FHE scheme

summary

Correctness - Yes
Evaluation - Additions and Multiplications
Compactness - with relinearization

Security - RLWE assumption

Note:

- Modulus q is large: decompose it in smaller
primes (Chinese remainder Theorem)

- Plaintext space is R;: batch N values in Z,

FHE: Ry = Zy[X]/ (XY + 1)

KeyGen— (SR, pR, rlk):
Sk =5 <$R,
rlk = GenRLK(sR) rlk = GenPK(sR)

Enc(sk, me R,)— ¢
a<—$:RCI €enc < X, A= l%-l
c:=(—a-SskR+e. . +Am, a)

POssipg 7Re|in(rlk, ¢) ¢

Dec(sk, ¢)—»m
Add(c;, c,)=c¢; + ¢,

Mul(c;, ¢,) = Relin(rlR,R (¢, xc,)/A)

— By selecting appropriate parameters, enable
fast multiplication and SIMD

SIMD: single input multiple data

FHE In Practice

Challenges

1.

€A

+
1

X
°

=

I I

W

2.
O

Selecting cryptographic parameters
Interdependencies between N, q,t, and y
Relies on estimators to assess the hardness

Circuit definition

How to represent functions into circuits

Minimize the multiplicative depth

Optimize the costly operations (bootstrap, rescale, etc.)

Bearing with the costs
FHE induces both computation and communication overhead
Not all plaintexts space can be easily handled

73

Naive operation

(((mq-my) -mz)-my)

+e2

+e3

Optimization

(.(m1 - my) ;(m3 ‘ m4)?

https://github.com/malb/lattice-estimator

FHE In Practice

Parameterization
= Dimension N: between 2" and 26 polynomial size (keys, ciphertexts)
= Ciphertext space: R, with g 100s of bits coefficient size of ciphertexts

= Message space: t application dependent can be a small as 20 bits

Example: compute Squared Distance between two 2D
= [og N =13, log q =218, log t = 16

= One ciphertext: 450kB

= Setup: 7.4 ms

= Encode + Enc 1 vector: 2.7 ms

= Eval: 7 ms

= Dec + Decode: 2 ms

74

FHE In Practice '
Extension to malicious models 8

[l g
&‘

Malicious threat model?
So far, the evaluator can only evaluate the function on the input it receives.

In reality, evaluator could be:

 Honest but Curious: Parties will follow the HE protocol honestly, but try to learn as
much as possible from the messages they receive

« Malicious: Parties can arbitrarily deviate from the HE protocol to learn as much as
possible

= Requires heavy machinery e.g., Zero-Knowledge Proofs

Homomorphic Encryption
Other resources P

Survey on Fully Homomorphic Encryption,
Theory, and Applications

Chiara Marcolla, Victor Sucasas, Member, IEEE, Marc Manzano, Riccardo Bassoli, Member, IEEE,
Frank HLP. Fitzek, Senior Member, IEEE and Nojwa Aaraj

SoK: Fully Homomorphic Encryption Compilers

Alexander Viand Patrick Jattke, Anwar Hithnawi
Zurich Zurich ETH Zurich
alexander.viand@inf.ethz.ch pi h i

Abstract—Data privacy concerns are increasing dgnifianty learning, cloud computing, of in (he different data processing
n e conen o Inerne, of Thsg, a e, lge com - layers ‘of new generation networks

ot o s and oher appicatons Homomorphic eneypton schemes (ht sl o0 P of
Eaabicd by next generat - Homomorphi ion
bl by next Bl X o e EXPin . opcsion,or 3 et unbes of i have existed for
e T oty mesges wihou decypion: This £ 008 (08 Some examples e the RSA crypuosystem by
B vy aarces homomorphic cncrpton om R, " Adieman (3] (1978), encryption scheme
both. tical and i The paper delves of Goldwasser and Micali (4] (1982). ElGamal (5] (1985),

aparat_sully Homomorghic Bnceypion (FEE) llows a seven orders of magnitude slower than an TMUL instruction
B e mepbrary computaons on_ enerpied o a modern CPU, it is P06t 0 ‘make many applications
o e computation Teuls. prciical, Addiionally, modern schemes ntroduced SIMD-

e ein: 3 e e por, 41l gl “encoding thousands of plaintext values into
(ot '--'m-“ﬂ"h"-g;‘gml:‘w‘"d 'w"mﬂﬂ ealoh (6) (1994), Naceache and Stera (7) (1998). Pailicr This powerful concepl nas frst conceived by Rivest et al. in % xTu‘-‘glc Ca‘dpk“c“ © mmhi;:wwdz\rw;\vp [‘ 1121l)
omamerpic acypion (45 1 ol e {1595 and Boneh, Gioh and Nisim [9) 2005). In pasticulat This Do e emdined unrealized untl Crag Gentry - These a4VeEs ave enabled a wide range of applcations
Tundamentals and security pry , and de prescnted the frst feasible FHE scheme in 2006, covering & wide range of domains. These include mebile
e schemcs hased on various mathematical p 191, the autbors proposed. the first scheme cagable of e e B e collction o senstve du i cloud
i THE o, b o7 M0, L i o vy pesoming (v oo ivary mumber of aditions T s Lt et coetonof st e S applications Where FHE has been used to encrypt the back
preservis oot earning using. homomorphic encryplion, and just one ‘multiplication, then again an arbirary number of Tegulated b 3 DS nely demand confidential and end of a privacy-preserving flness app [13], while continuing
I v FHE o cogioceriog sl vt addiions. L, Aguilar Meichor, Gaborit and Herranz (10] Secure computing solu oy e e toa 0 provide 2 ralime cXpernc In U
el provides o compuing, 124, g 2009 proposed 1 heoreics approach that permits chaining. s o oment of FHE (ool To wndersand FHE has beeh ed 1o cnable priv
e e e-art FHE libeares and wols,implemented i B veral momomorphic schemes in order to have & fixed amount the landscape of recent FHE -w!ulevdnpmﬂn, we conduet analysis {14) applications over large datasets
e und hardware, and the performance thercol. e maliplicaions, . more than one, for a given publc K. e e ently s evaluation o explore he has been used 10 solve various well-known problems
oo ers—Fuy Homomorphic Encrypio, Homemorph However it was not until 2009, when Genty (21, [11) pro- e we nurvey, cvalunt, and systematize FHE tons like Private Set D (15), previous
Eneryption, Lattices, Neural Networks, Fog Computing. “Phia posed the first fully homomorphic encryption (FHE) scheme and compilers. We perform e these took? Solutions by 2x it running time. In the domain of machine
Computing, [oT- Sehich supports the evaluation of arbitrary circuits. n his Derformance and usabilty aspects on & variety af applications. learing, FHE has been used for tasks ranging from linear and
e Gentry not only proposed an FHE schemme, but also pro- performtnee and oL aons for developers iniending _ logisc regresson [16) 10 ‘Encrypted Neural Network infer-
oo fr comarc 3 FHE seheme e concide ol e cumion om e cnce 17, whichcn s < i
1. INTRODUCTI \ideda method for constructing a gencral FHE schem® 07 V_ -based appications wnd on on enee {17), which can be used to run prvacy-preserving
™ " 'mr CL"" o gy e i limited bat suffcient homomorphic evaluation eections for FHE tools development. e Niek aplications.fo example, for private phishing emil
« noton of fully homomorphic encrypion gAY capacty. Since then, bomormarhie VPR has wiggered Setection (18], As a consequence, there has been increasing
:‘i‘;d Lt m:“-:#‘ﬁ";nw?;7;"";:;‘0:mb¥m‘:‘*=; gnificant interes, and novel constructions on FHE have been 1. INTRODUCTION nterest in FHE-based secure computation solutions B9
m';-‘:"me e Sclnjydcltd it mf ot proposed following Gentry's idea, being BGV (12), FV (13}, Recent years have seen unprecedented growth in the adop- Gartaer projects [19) that “by 2025, at least 20% of companies
z"“l; "ph“ M‘:’l‘zw‘j S ey popcied mzﬂi’l At TFHE (14), and CKKS (15] the most representative. ion of cloud computing services. More and more highly reg- will have a budget for projects that ‘include fully homomorphic
gyl 005w Gt oo e o o esarch effors fo FHE schenes focsed o o e egarvaions (s 5. baks,gonerments _ eneyplon.”
‘morphi T eeypton emabcs operations on plaiiexts witbout o Lcorsiog e schemes. Symmetic FHE scheries e anecs, healh), where data securty is paramount, move - DeSPLC these recent breakibroughs, building secure and
8 n iz 2 ave gained less popularity among the scientfic communty. s and scrvices 10 the cloud. This trend has led to _ efficient FHE based applications remains a challenging task
decryption. Namely, a set of operations can be ‘performed ue 1. their more limited. applicabilty to cloud computing eat applications re challenging

u surge in demand for secure and confidential computng This s largely attributed to the differences between tradition
& s that protect data confidentality while in transit,fest, _ programEe paradigms and FHE’s computation model, which
"o in-use. This is an amply justficd and expected demand. - poses nique challenges. For example, virually all sandard
oty in the light of the numerous reports of data programing paradigms rely on data-dependent branching,
B, [2). Fully Homomorphic Encryption (FHE) is e ifiewe Sitements and loops. On the other band, FHE
ey echnological cnablr for sccure computaion and has - comPHICEE ‘e, by definition, data-independent, or they
Tecently matured to be pracical for real-world use (31-19) o violte the privacy guarantces. Working with FHE
THE allows arbirary computations to be pecformed over tlso ntroduces significant engineering challenges in practice
enceypted data, climinating the need (o decrypt the data ind Difterent schemes offer varying performance tradeoffs, and
xpos it to potenial isk while in use. While st proposed optimal choicesare heavily applicaion-dependent. To address
R be 19705 [10), FHE was long considered impossible or Some "f the engineering challenges in this space, we have sen

o Nl 1 P perons ar SIS 85 A, some poporedsymnetic s e
e il on e comsponding paintexts ccuy vleriiis ¢ OO0 b L Neverthless, there
diion and ot 1w i anulaion . some ppers that proposed syt 3 FAE ST
T e s a emendous 2pcaion g can be divided nto vo caegre:) 1S it
e e i, e ey i il 3 s o
D et e mch s machin)ty syt ke FHE whenes (201 21 L5 ED
C. Marcolla, V. Sucasas and N. Aamj are with the Tochnalogy Tono- WORR commenting that, in 2011, Rothblum 221 published &
Lt S X) e mothod o comver 3 ST Somomarptic cncryption

) e, CA, US. i

marc @sandbosaq.com). M. Manzano is also with the orics aad Cons. 38 BSYDIIEAS one. This survey only covers public key FH
oo e e e o S bkt o 00 pmmerc ke schemes can

Sagon, Span b found in (16] o prcica, However, thanks 1o advances in the undefying 2 e OF otk on tools that aim to improve accessibilty and
S g g e D T ey o on bomomor- e g, e chr e i feld

Commnon N e e U Drin, P hePAO S i geneis. We extend previous surveys implomentations, it has become increasngly practcal. In o tool support,realizing FHE-based compuations by
Drsten, Germuny. B e topic (16), (23)-126), o cover the most xelvank ad- e eosgh work fiom Crag Geniry proposed the implementng e equired mathematical operations direcly or
IR Pk e o B o Tt e vl W, vamces on FHE and s appicalis ‘Specifically, the survey is Tt teasible FHE scheme [11]. In the last decade, FHE has - using 30 arbitary-precision arithmetic library is complex, re-
Bl ik e @1 desden). " e tared as follows: i) Section|II provides the preliminaries gone from a theortial concept (0 reality, Witk performanes uiing considersble experise in both cryplogEaphy and high-

Sproving by up to five onders of magnitude For example performance numerical computation. Thercfore, FHE ibea®
e or mlliplication between ciphetextsdropped from 30 ke e ‘Simple Encrypted Asithmetic Library (SEAL) (201
e o o than 20 millscconds. While this i sl around ot the Fust Fully Homomorphic Encryption Library over the

C. Marcolla et al. "Surve
: . "Survey on fully :
hgmti.mor.phlc 'encrypt|on, theory, and A.Viand et al. "SoK: Fully homomorphic
pplications." Proc. of the IEEE 2022 encryption compilers." 2021 I[EEE SP

Homomorphic Encryption

Conclusion

Enables computation over
encryption

Has become increasingly
practical

Modern lattice-based
schemes plausibly quantum
resistant

HE scheme:
KeyGen(1¥)—(sR, pk)
Enc(pk, m; r)— ¢
Dec(sk, ¢)—m

Eval(pk, f, C1,...,Cn)—>Cf()

Eval(pR,f, c)

T cfm)

f(m)«—{Dec(sk, -

Challenges:

AN

Parameters Plaintext
selection encoding

=2 .
i BNEnEE

Amortization

Circuit Noise
design management

References
Software Libraries

= [HELlib] https://github.com/shaih/HElib Halevi and Shoup
= [SEAL] https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-

library/ SEAL

= [NFLlib] https://github.com/quarkslab/NFLlib French consortium

= [HEAAN] https://github.com/kimandrik/HEAAN Korean researchers

= [TFHE] https://tfhe.github.io/tfhe/ inpher + French researchers

= [PALISADE] https://git.njit.edu/palisade/PALISADE New Jersey Institute of Technology
= [cuHE] https://github.com/vernamlab/cuHE

= [Lattigo] https://github.com/tuneinsight/lattigo

= [OpenFHE] https://openfhe.org/

= [THFE-rs] https://docs.zama.ai/tfhe-rs

78

https://github.com/shaih/HElib
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://github.com/quarkslab/NFLlib
https://github.com/kimandrik/HEAAN
https://tfhe.github.io/tfhe/
https://git.njit.edu/palisade/PALISADE
https://github.com/vernamlab/cuHE
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo

