

Homomorphic Encryption

CS523 2025

Sylvain Chatel | March 04, 2025 | v1.0.2

Some slides/ideas adapted from C. Mouchet, D. Fiore, JP Hubaux, C. Troncoso, and W. Lueks

Introduction

Homomorphic encryption

Lecture aim: study the cryptographic technique and related
toolbox for privacy engineering

tool
for building PETS

cryptographic
primitive

Application Layer

Network Layer

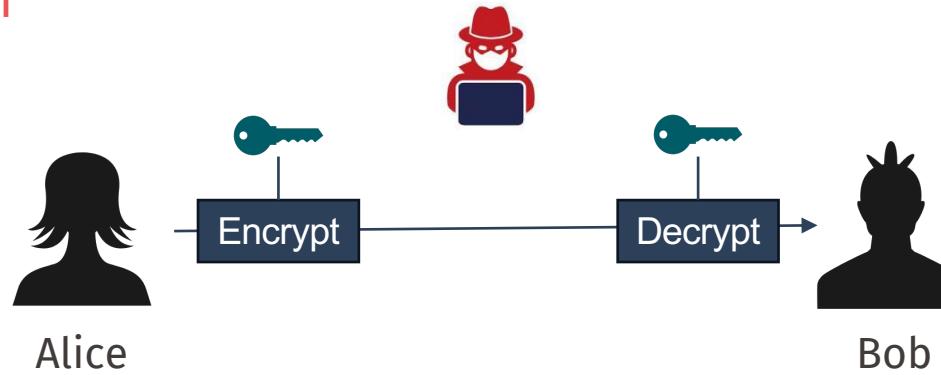
Goals

What should you learn today?

- Basic understanding of **homomorphic encryption**
- Understand **when to use** homomorphic encryption
- Understand **key properties**:
 - Communication and computation cost
 - Trust assumptions
 - Guarantees with respect to inputs
- Understand **practical issues** when using homomorphic encryption

Introduction Encryption

4



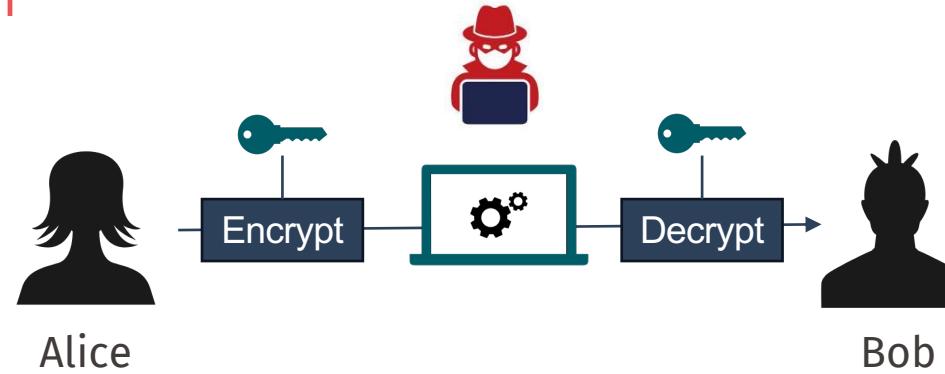
Encryption aims at data confidentiality

In transit

In storage

Introduction Encryption

5



Encryption aims at data confidentiality

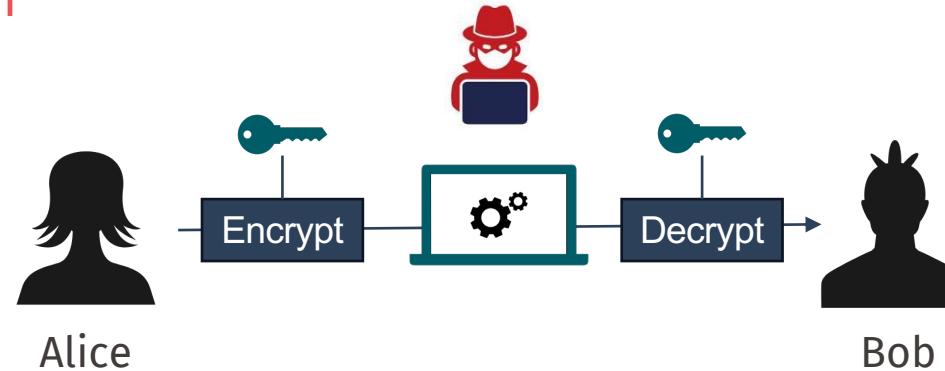
- In transit

- In storage

Homomorphic Encryption aims at also confidentiality in **computation**

Introduction Encryption

6



Encryption aims at data confidentiality

In transit

In storage

Homomorphic Encryption aims at also confidentiality in **computation**

Health Data
Analysis

Financial Fraud
Prevention

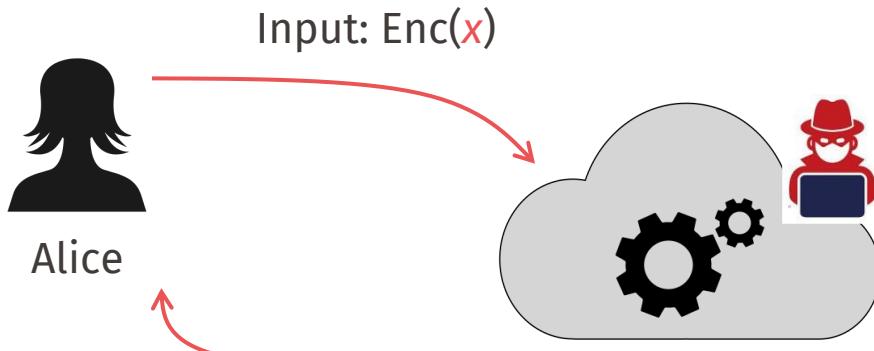
Govt Data: e.g.,
demographics,
vote, etc.

Overview

Homomorphic encryption

7

- A cryptographic primitive that enables the computation of functions in the encrypted domain



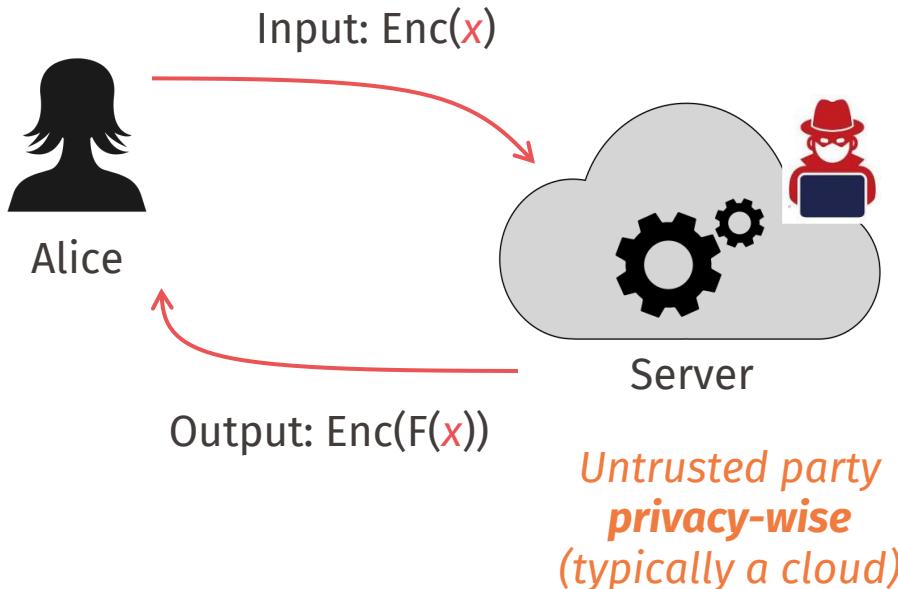
*Untrusted party
privacy-wise
(typically a cloud)*

Overview

Homomorphic encryption

8

- A cryptographic primitive that enables the computation of functions in the encrypted domain

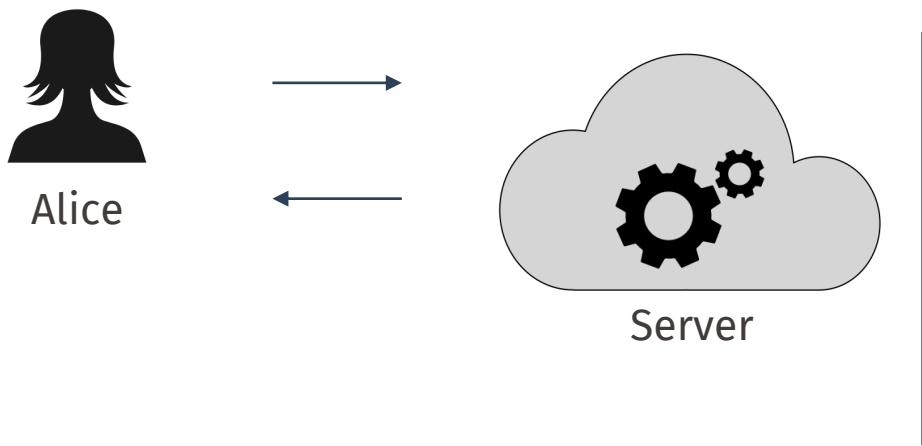


Overview

Homomorphic Encryption System Model

Homomorphic encryption: classically, has one computing party, and

- **one** party providing the input and reading the result, or

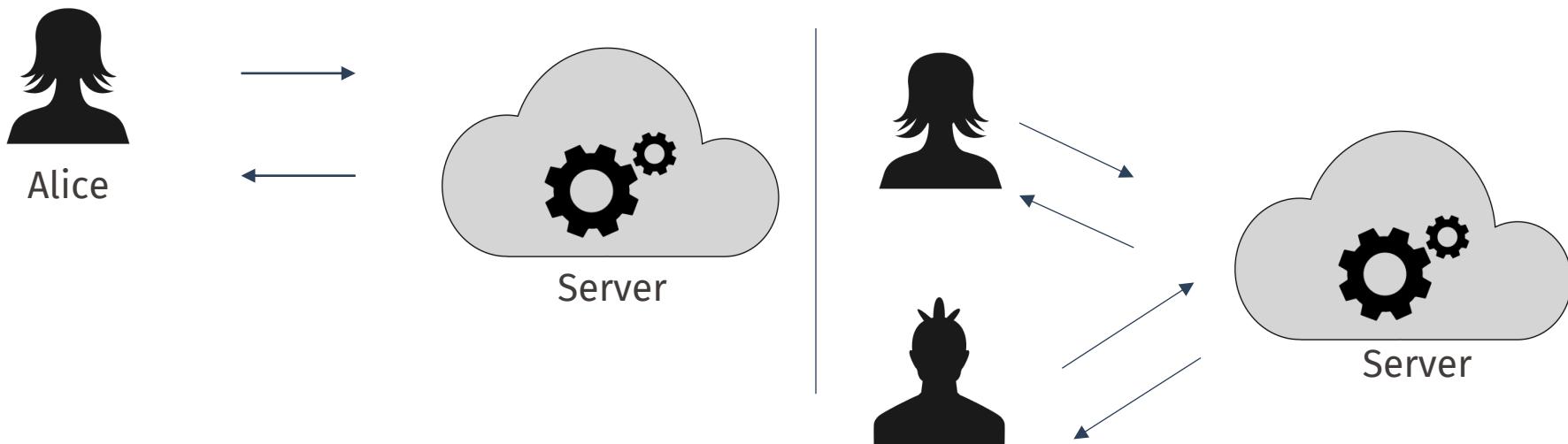


Overview

Homomorphic Encryption System Model

Homomorphic encryption: classically, has one computing party, and

- **one** party providing the input and reading the result, or
- **n parties** providing the input and **another** reading the result, or
- **n parties** providing data and learning the result (not in this class)



What about Alternatives? NDAs, SMC, TEE

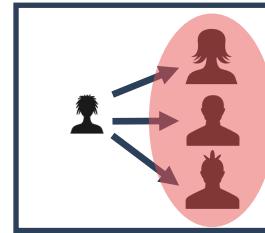
11

Non-Disclosure Agreements

Low tech

Lengthy Process

Limited protection

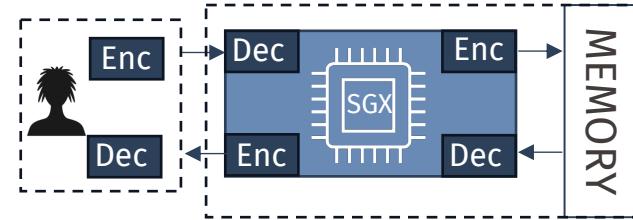


Secret Sharing- SMC

Non-collusion assumption

If they do, they can
join their shares and
recover all the secrets!

Hard to find in practice



Trusted Execution Env.

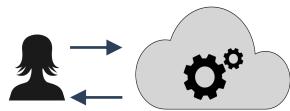
Trust in manufacturer
Can be vulnerable to
physical attacks

Homomorphic Encryption

Objectives Consolidated

Enable **computation** on **encrypted data**

- Computation performed before decryption
- Decryption key known only to the receiver



Outsourced computation setting: party with data provides an encrypted version of the data to a *single* untrusted computation party (*a server*). No need for a non-collusion assumption.

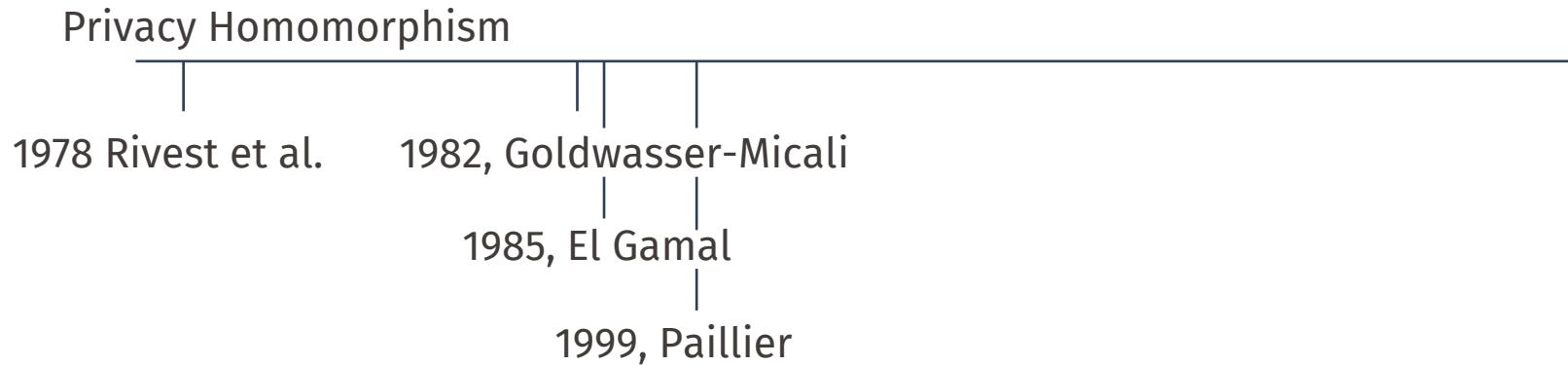
Rely on **solely on the security of the cryptographic primitives**

Homomorphic Encryption History

Privacy Homomorphism

1978 Rivest et al.

Homomorphic Encryption History



- RSA 1977: modular multiplication
- Goldwasser-Micali: XOR
- El Gamal: modular multiplication
- Paillier: modular addition

Homomorphic Encryption History

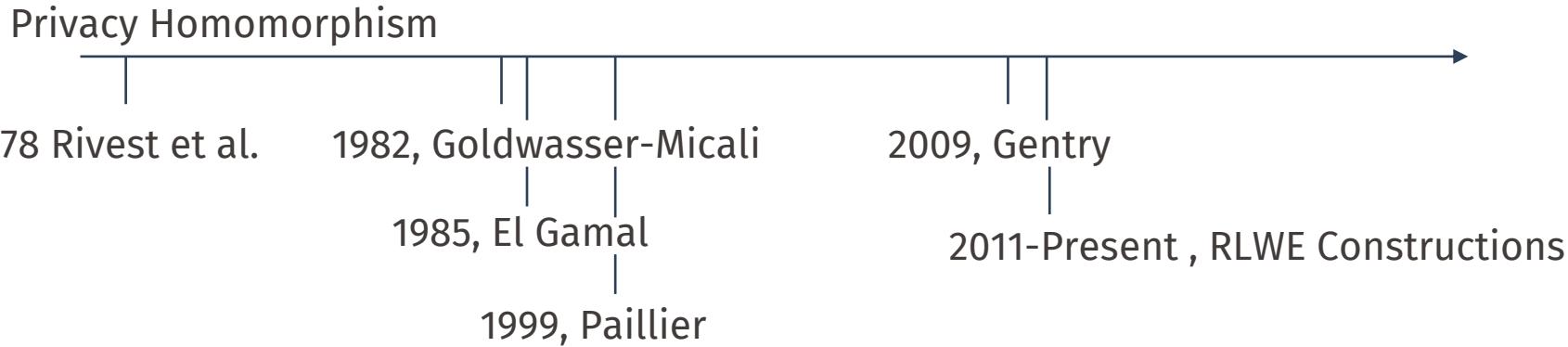
Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali 2009, Gentry

1985, El Gamal

1999, Paillier

Homomorphic Encryption History



- Lattice-based schemes (e.g., BGV, BFV, CGGI, CKKS)
- Many libraries (e.g., Helib, SEAL, HEAAN, PALISADE, **OpenFHE**, **Lattigo**, **TFHE-rs**.)
- Standardization 2017-soon

Homomorphic Encryption Applications

 Swift

Announcing Swift Homomorphic Encryption

JULY 30, 2024

We're excited to announce a new open source Swift package for homomorphic encryption in Swift: [swift-homomorphic-encryption](#).

Homomorphic encryption (HE) is a cryptographic technique that enables computation on encrypted data *without* revealing the underlying unencrypted data to the operating process. It provides a means for clients to send encrypted data to a server, which operates on that encrypted data and returns a result that the client can decrypt. During the execution of the request, the server itself never decrypts the original data or even has access to the decryption key. Such an approach presents new opportunities for cloud services to operate while protecting the privacy and security of a user's data, which is obviously highly attractive for many scenarios.

Apple Live Caller ID - iOS18

TUNE INSIGHT Privacy-Preserving Federated Learning

Secure Federated Learning with Tune Insight encrypted computing platform

 Tune Insight
2,528 followers

November 21, 2023

Tune Insight Federated Learning

ZAMA

 Zama's fhEVM Coprocessor is now available

Zama's fhEVM

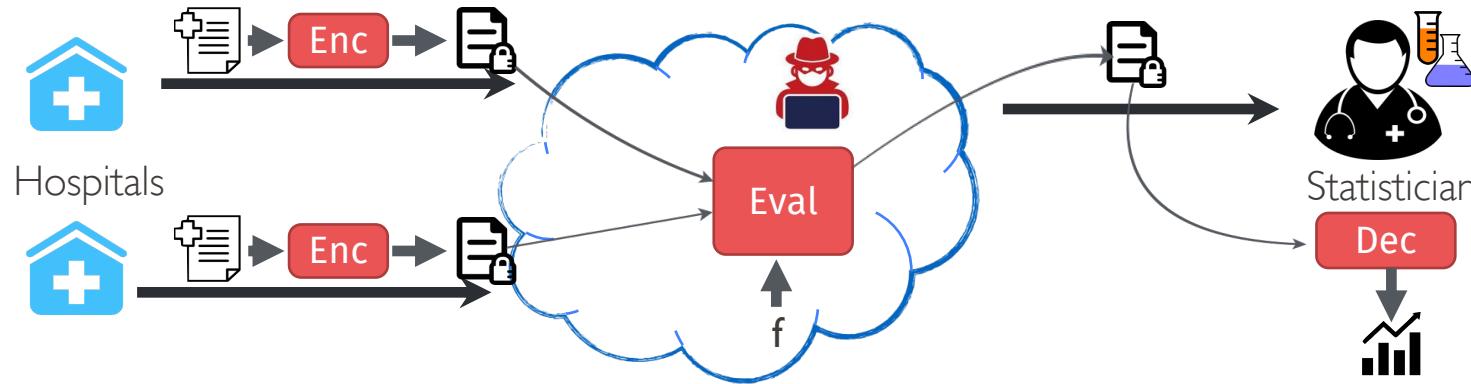
A simple and powerful solution for building decentralized apps with full privacy and confidentiality on Ethererum leveraging Fully Homomorphic Encryption (FHE).

Ready to use FHE for your business? Talk to our team.

Zama confidentiality for Etherium

Example application

Privacy-preserving statistics on medical data



- **Goal:** a statistician wants to compute statistics on joint data from several hospitals
- **Privacy concern:** single data entries are privacy-sensitive patients' data
- **Using a cloud server and FHE**
 - Hospitals store encrypted patients' data on the cloud
 - Cloud compute statistics on joint (encrypted) datasets. Statistician decrypts results

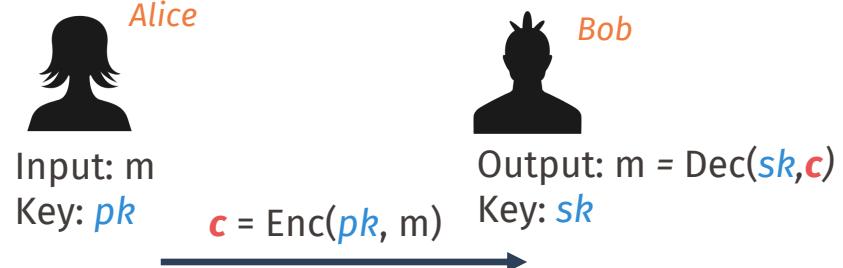
Definitions and Properties

Formal definition

Cryptographic Notation

Symmetric encryption:
parties **share the same secret key sk**

KeyGen(1^k) \rightarrow (sk, pk)
Enc($pk, m; r$) \rightarrow c
Dec(sk, c) \rightarrow m



Public key encryption (PKE): parties have a **secret key sk (sometimes: decryption key)** and a **public key pk (sometimes: encryption key)**

Generates a private/public key pair for a security parameter k
Encrypt the message m with randomness r to a ciphertext c
Decrypt a ciphertext m to obtain the message m

Formal definition

Homomorphic encryption

A **homomorphic encryption scheme** is given by the following four algorithms:

- **KeyGen**(1^k) $\rightarrow (sk, pk)$ Generates a private/public key pair for a security parameter k
- **Enc**($pk, m; r$) $\rightarrow c$ Encrypt the message m with randomness r to a ciphertext c
- **Dec**(sk, c) $\rightarrow m$ Decrypt a ciphertext c to obtain the message m
- **Eval**(pk, f, c_1, \dots, c_n) $\rightarrow c'$ Evaluate function f on the encrypted input c_i to obtain a new ciphertext c'

Eval() is what makes HE different from standard PK encryption

(in some schemes **Eval** uses a special key evk instead of pk . If this is the case, then **KeyGen** generates a triplet)

(The **KeyGen** and **Enc** are randomized algorithms. The randomness parameter is often implicit)

Properties

Homomorphic encryption

23

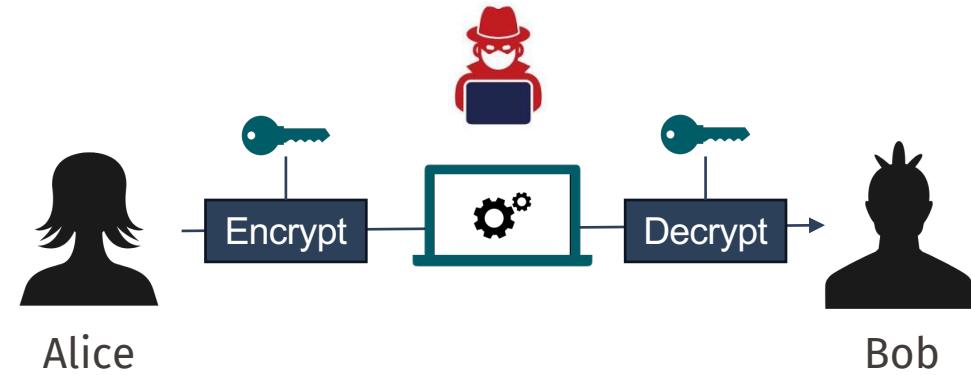
Correctness

Security

Evaluation correctness

Composition

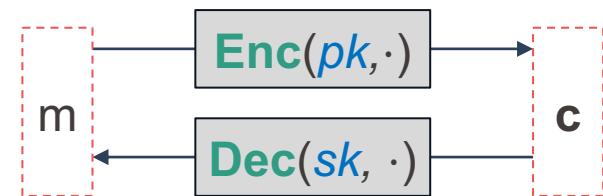
Compactness



Homomorphic Encryption

Encryption Correctness

Correctness – *intuition:*



Homomorphic Encryption

Encryption Correctness

Correctness – *intuition*: applying the deterministic **decryption** function to the randomized **encryption** always **returns the initial plaintext**.

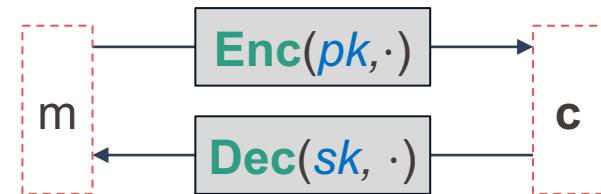
Correctness.

$\forall r \in \text{Rand}, \forall m \in \mathcal{P} \text{ and } (sk, pk) \leftarrow \text{KeyGen}(1^k)$:

$$\text{Dec}(sk, \text{Enc}(pk, m; r)) = m$$

$\text{Dec}(sk, \cdot)$ is the deterministic inverse of the randomized $\text{Enc}(pk, \cdot)$ function

\mathcal{P} is the plaintext space and Rand a source of randomness



Homomorphic Encryption

Homomorphic Correctness

Objective: Evaluate the plaintext function f over the encryption in the ciphertext space

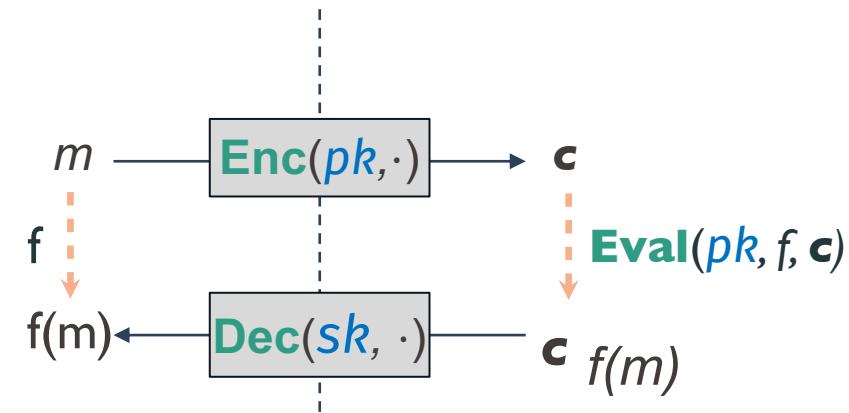
Recall an HE scheme:

$\mathbf{KeyGen}(1^k) \rightarrow (sk, pk)$

$\mathbf{Enc}(pk, m; r) \rightarrow c$

$\mathbf{Dec}(sk, c) \rightarrow m$

$\mathbf{Eval}(pk, f, c) \rightarrow c_f()$



Homomorphic Encryption

Wait... Homomorphic?

Homomorphism: mapping between two sets that preserves their algebraic structure

Group homomorphism

Given two groups $(G, +)$, (H, \boxtimes)

$h: G \rightarrow H$ is a *group-homomorphism* if $\forall x, y \in G$:

$$h(x + y) = h(x) \boxtimes h(y)$$

For an **additive** HE scheme, $\text{Dec}(sk, \cdot): \mathcal{C} \rightarrow \mathcal{P}$ is an homomorphism between $(\mathcal{C}, \text{Eval.Add})$ and $(\mathcal{P}, +)$

A **group** consists of a **set of elements** and **one operation** that combines two elements of the set into another element of the set (operation must be associative, there is an identity element, and all elements have inverse)

A **ring** consists of a set of elements and **two operations** that combine two elements of the set into another element of the set (multiplication does not need to be commutative, and does not need inverse)

Homomorphic Encryption

Homomorphic Correctness

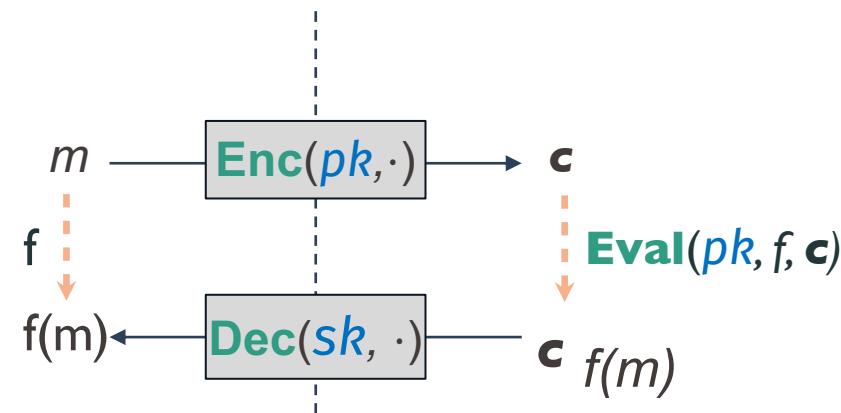
Objective: Evaluate the plaintext function f over the encryption in the ciphertext space

For a set \mathcal{F} of admissible functions

$\forall m \in \mathcal{P}$, $\forall f \in \mathcal{F}$, and

$(sk, pk) \leftarrow \text{KeyGen}(1^k)$:

$\text{Dec}(sk, \text{Eval}(pk, f, \text{Enc}(pk, m))) = f(m)$

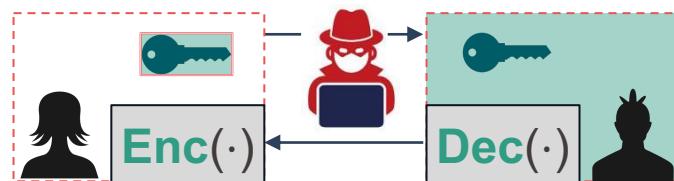


This definition is
relaxed in practice

Homomorphic Encryption Security

29

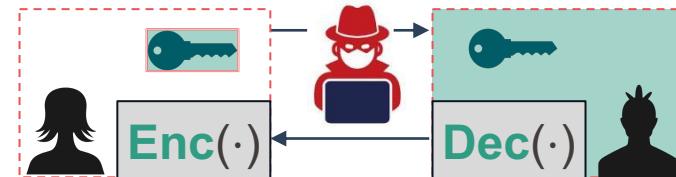
Security – *intuition:*



Homomorphic Encryption Security

Security – *intuition*: The adversary learns nothing from the ciphertexts and public keys

How do we capture this?

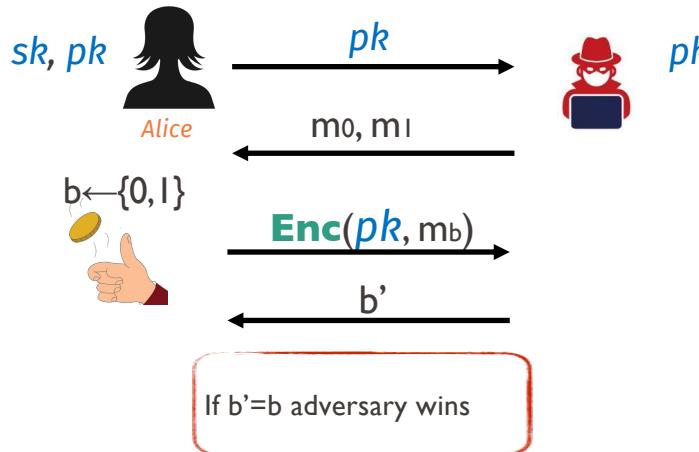


Game-based security definition: method to capture a security definition using a game between an adversary and a challenger. If the adversary has a non-negligible advantage to win the game, the adversary “breaks” the security property.

Semantic security (IND-CPA) of Homomorphic encryption

FYI

Game-based security: is a method to capture a security definition using a game between an adversary and a challenger. If the adversary wins the game, the adversary “breaks” the security property.



$(sk, pk) \leftarrow \text{KeyGen}(1^k)$
 $(m_0, m_1) \leftarrow \mathcal{A}(pk)$ // adversary chooses two messages
 $b \leftarrow \{0,1\}$; // random bit is chosen
 $c \leftarrow \text{Enc}(pk, m_b)$ // message b is encrypted
 $b' \leftarrow \mathcal{A}(c)$ // adversary must figure out b

Semantic security. HE is secure if $\frac{1}{2} - \Pr[b' = b] = \text{negl}(k)$

Semantic security – intuition

seeing encryption of messages does not give the adversary information that helps them guessing the encrypted message better than random guess

Homomorphic Encryption

Is this an HE scheme?

Consider the following scheme built on top of a IND-CPA secure **PKE** scheme:

$$\mathbf{KeyGen}(1^k) = \mathbf{PKE.KeyGen}(1^k)$$
$$\mathbf{Enc}(pk, m) = \{c_{\mathbf{PKE}} = \mathbf{PKE.Enc}(pk, m); \text{return } \mathbf{c} = (c_{\mathbf{PKE}}, \text{nil})\}$$
$$\mathbf{Eval}(pk, f, \mathbf{c}) = \{c_{\mathbf{PKE}} = \mathbf{c}[0]; \text{return } (c_{\mathbf{PKE}}, f)\}$$
$$\mathbf{Dec}(sk, \mathbf{c}) = \{c_{\mathbf{PKE}}, f \leftarrow \mathbf{c}; \text{return } f(\mathbf{PKE.Dec}(sk, c_{\mathbf{PKE}}))\}$$

1. Is it correct Encryption scheme?
2. Is it IND-CPA secure?
3. Is it useful?

Homomorphic Encryption

Is this an HE scheme?

Consider the following scheme built on top of a IND-CPA secure **PKE** scheme:

$$\mathbf{KeyGen}(1^k) = \mathbf{PKE.KeyGen}(1^k)$$
$$\mathbf{Enc}(pk, m) = \{c_{\mathbf{PKE}} = \mathbf{PKE.Enc}(pk, m); \text{return } \mathbf{c} = (c_{\mathbf{PKE}}, \text{nil})\}$$
$$\mathbf{Eval}(pk, f, \mathbf{c}) = \{c_{\mathbf{PKE}} = \mathbf{c}[0]; \text{return } (c_{\mathbf{PKE}}, f)\}$$
$$\mathbf{Dec}(sk, \mathbf{c}) = \{c_{\mathbf{PKE}}, f \leftarrow \mathbf{c}; \text{return } f(\mathbf{PKE.Dec}(sk, c_{\mathbf{PKE}}))\}$$

1. Is it correct Encryption scheme? Yes, straightforward from the decryption
2. Is it IND-CPA secure? Yes, as it would break the IND-CPA from **PKE**
3. Is it useful? **No**, the evaluation of f is performed at decryption...

Homomorphic Encryption

Compactness

Compactness – *intuition*: the ciphertext size should not be growing through homomorphic operations

Compactness. HE compactly evaluates a family of functions \mathcal{F} if

$$\forall (\mathbf{sk}, \mathbf{pk}) \leftarrow \mathbf{KeyGen}(1^k), \quad \forall f \in \mathcal{F}, \quad \forall m_i \in \mathcal{P}:$$

There exists a polynomial $p()$ such that the size of

$|\mathbf{Eval}(\mathbf{pk}, f, \mathbf{c}_1, \dots, \mathbf{c}_n)| < p(k)$, with k the security parameter, independent of $f()$;
i.e., the complexity of \mathbf{Dec} is independent of $f()$.

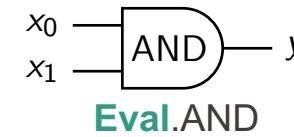
This definition is
relaxed in practice

Homomorphic Encryption Composition

Composition – *intuition*: Build HE computation from a set of simple operation (think Circuits and CPU)

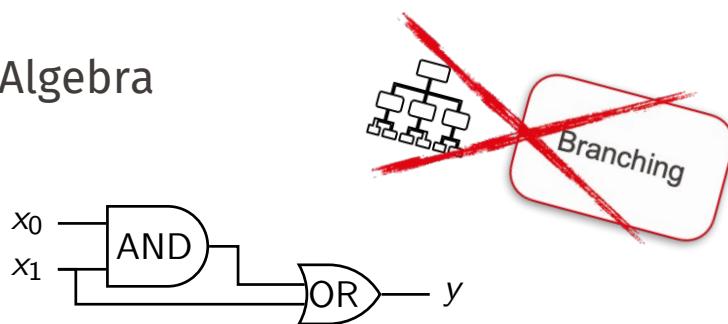
Define **Eval** as circuit of simple “gates”. E.g., Boolean Algebra

x_0	x_1	$\text{AND}(x_0, x_1)$
0	0	0
0	1	0
1	0	0
1	1	1



x_0	x_1	$\text{OR}(x_0, x_1)$
0	0	0
0	1	1
1	0	1
1	1	1

x_0	x_1	$\text{OR}(\text{AND}(x_0, x_1), x_1)$
0	0	0
0	1	1
1	0	0
1	1	1



Homomorphic Encryption Composition

Composition – *intuition*: Build HE computation from a set of simple operation (think Circuits and CPU)

$\forall f \in \mathcal{F}, f: \mathcal{P}^n \rightarrow \mathcal{P}, \forall (m_1, \dots, m_n) \in \mathcal{P}^n, (sk, pk) \leftarrow \text{KeyGen}(1^k)$, and $\forall i \in [n] c_i = \text{Enc}(pk, m_i)$

- **Correctness for n-ary functions:**

$$\text{Dec}(sk, \text{Eval}(pk, f, c_1, \dots, c_n)) = f(m_1, \dots, m_n)$$

- **Composability:**

$$\text{Dec}(sk, \text{Eval}(pk, f, c_1, \dots, c_n)) = f(\text{Dec}(sk, c_1), \dots, \text{Dec}(sk, c_n))$$

Informally extends correctness to any *valid* ciphertext (fresh or **Eval**)

Homomorphic Encryption

Summary of the properties

$\forall f \in \mathcal{F}, f: \mathcal{P}^n \rightarrow \mathcal{P}, \forall (m_1, \dots, m_n) \in \mathcal{P}^n,$
 $(sk, pk) \leftarrow \text{KeyGen}(1^k), \text{ and } \forall i \in [n] \quad c_i = \text{Enc}(pk, m_i)$

Correctness

$$\text{Dec}(sk, \text{Enc}(pk, m_1)) = f(m_1)$$

IND-CPA Security

$$\text{Adv}_{\text{HE}, \mathcal{A}}^{\text{IND-CPA}} = \text{negl}(k)$$

Evaluation correctness and composition

$$\text{Dec}(sk, \text{Eval}(pk, f, c_1, \dots, c_n)) = f(m_1, \dots, m_n)$$

$$\text{Dec}(sk, \text{Eval}(pk, f, c_1, \dots, c_n)) = f(\text{Dec}(sk, c_1), \dots, \text{Dec}(sk, c_n))$$

Compactness

$$|\text{Eval}(pk, f, c_1, \dots, c_n)| < p(k) \text{ for } p \text{ polynomial Independent of } f$$

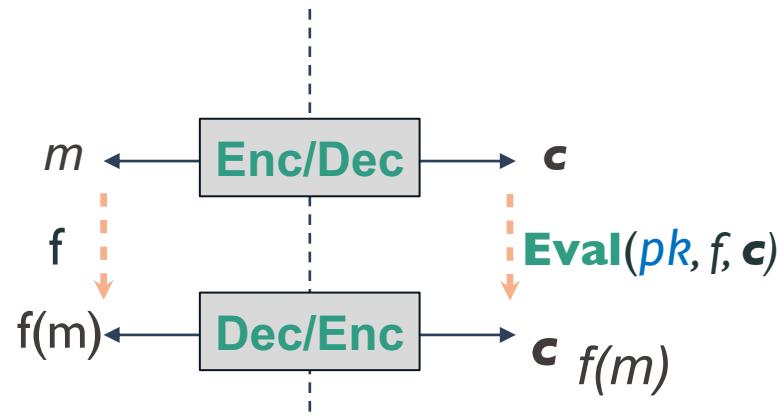
HE scheme:

$$\text{KeyGen}(1^k) \rightarrow (sk, pk)$$

$$\text{Enc}(pk, m; r) \rightarrow c$$

$$\text{Dec}(sk, c) \rightarrow m$$

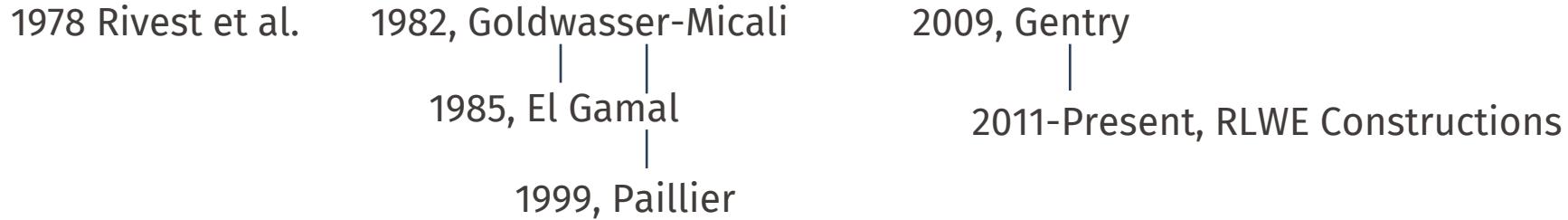
$$\text{Eval}(pk, f, c_1, \dots, c_n) \rightarrow c_f()$$



Constructions

Homomorphic Encryption History

Privacy Homomorphism



We will cover

- RSA
- El Gamal
- Paillier
- RLWE

El Gamal Encryption Properties

ElGamal(G, g):

Let G be a cyclic group of order $q=|G|$ generated by g

KeyGen $\rightarrow (sk, pk)$:

$$sk \leftarrow \$\{1, \dots, q-1\}, pk = g^{sk}$$

Enc($pk, m \in G$) $\rightarrow c$

$$r \leftarrow \$\{1, \dots, q-1\}$$

$$c := (m \cdot pk^r, g^r)$$

Dec(sk, c) $\rightarrow m$

$$m := c[0] / c[1]^{sk}$$

Security – Security from the Discrete Logarithm:

Given g and $y = g^x \bmod p$, find x

Correctness –

Evaluation – Component-wise _____

Compact –

El Gamal Encryption Properties

EIGamal(G, g):

Let G be a cyclic group of order $q=|G|$ generated by g

KeyGen $\rightarrow (sk, pk)$:

$$sk \leftarrow \$\{1, \dots, q-1\}, pk = g^{sk}$$

Enc($pk, m \in G$) $\rightarrow c$

$$r \leftarrow \$\{1, \dots, q-1\}$$

$$c := (m \cdot pk^r, g^r)$$

Dec(sk, c) $\rightarrow m$

$$m := c[0] / c[1]^{sk}$$

Security – Security from the Discrete Logarithm:

Given g and $y = g^x \bmod p$, find x

Correctness – Follows by definition

$$\begin{aligned} \mathbf{Dec}(sk, \mathbf{Enc}(pk, m)) &= \mathbf{Dec}(sk, (m \cdot pk^r, g^r)) \\ &= m \cdot pk^r \cdot (g^r)^{-sk} = m \cdot g^{r \cdot sk} \cdot (g^r)^{-sk} = m \end{aligned}$$

Evaluation – Component-wise _____

Compact –

El Gamal Encryption Properties

ElGamal(G, g):

Let G be a cyclic group of order $q=|G|$ generated by g

KeyGen $\rightarrow (sk, pk)$:

$$sk \leftarrow \$\{1, \dots, q-1\}, pk = g^{sk}$$

Enc(pk, $m \in G$) $\rightarrow c$

$$r \leftarrow \$\{1, \dots, q-1\}$$

$$c := (m \cdot pk^r, g^r)$$

Dec(sk, c) $\rightarrow m$

$$m := c[0] / c[1]^{sk}$$

Security – Security from the Discrete Logarithm:

Given g and $y = g^x \bmod p$, find x

Correctness – Follows by definition

$$\begin{aligned} \mathbf{Dec}(sk, \mathbf{Enc}(pk, m)) &= \mathbf{Dec}(sk, (m \cdot pk^r, g^r)) \\ &= m \cdot pk^r \cdot (g^r)^{-sk} = m \cdot g^{r \cdot sk} \cdot (g^r)^{-sk} = m \end{aligned}$$

Evaluation – Component-wise **multiplication**

$$c_1 = \mathbf{Enc}(pk, m_1) \text{ and } c_2 = \mathbf{Enc}(pk, m_2)$$

$$\begin{aligned} \mathbf{Mul}(c_1, c_2) &= (c_1[0] \cdot c_2[0], c_1[1] \cdot c_2[1]) \\ &= (m_1 \cdot pk^{r_1} \cdot m_2 \cdot pk^{r_2}, g^{r_1} \cdot g^{r_2}) \\ &= (m_1 \cdot m_2 \cdot pk^{r_1+r_2}, g^{r_1+r_2}) = c \end{aligned}$$

$$\mathbf{Dec}(sk, c) = m_1 \cdot m_2$$

Compact –

El Gamal Encryption Properties

ElGamal(G, g):

Let G be a cyclic group of order $q=|G|$ generated by g

KeyGen $\rightarrow (sk, pk)$:

$$sk \leftarrow \$\{1, \dots, q-1\}, pk = g^{sk}$$

Enc(pk, $m \in G$) $\rightarrow c$

$$r \leftarrow \$\{1, \dots, q-1\}$$

$$c := (m \cdot pk^r, g^r)$$

Dec(sk, c) $\rightarrow m$

$$m := c[0] / c[1]^{sk}$$

Security – Security from the Discrete Logarithm:

Given g and $y = g^x \bmod p$, find x

Correctness – Follows by definition

$$\begin{aligned} \mathbf{Dec}(sk, \mathbf{Enc}(pk, m)) &= \mathbf{Dec}(sk, (m \cdot pk^r, g^r)) \\ &= m \cdot pk^r \cdot (g^r)^{-sk} = m \cdot g^{r \cdot sk} \cdot (g^r)^{-sk} = m \end{aligned}$$

Evaluation – Component-wise **multiplication**

$$c_1 = \mathbf{Enc}(pk, m_1) \text{ and } c_2 = \mathbf{Enc}(pk, m_2)$$

$$\begin{aligned} \mathbf{Mul}(c_1, c_2) &= (c_1[0] \cdot c_2[0], c_1[1] \cdot c_2[1]) \\ &= (m_1 \cdot pk^{r_1} \cdot m_2 \cdot pk^{r_2}, g^{r_1} \cdot g^{r_2}) \\ &= (m_1 \cdot m_2 \cdot pk^{r_1+r_2}, g^{r_1+r_2}) = c \end{aligned}$$

$$\mathbf{Dec}(sk, c) = m_1 \cdot m_2$$

Compact – yes

Additive El Gamal Encryption Properties

44

AddElGamal(\mathbf{G}, g):

Let \mathbf{G} be a cyclic group of order $q=|\mathbf{G}|$ generated by g

KeyGen \rightarrow (sk, pk):

$$sk \leftarrow \$\{1, \dots, q-1\}, pk = g^{sk}$$

Enc($pk, m \in \mathbf{G}$) \rightarrow \mathbf{c}

$$\begin{aligned} r &\leftarrow \$\{1, \dots, q-1\} \\ \mathbf{c} &:= (g^m \cdot pk^r, g^r) \end{aligned}$$

Dec(sk, \mathbf{c}) $\rightarrow m$

$$m := \log_g (c[0] / c[1]^{sk})$$

Useful plaintext space:

$(\mathbb{Z}_n, +)$ closed additive group of integers modulo n .

Supports any linear combination:

$$f(x_1, \dots, x_\ell) = \sum_{k=1}^{\ell} \delta_i \cdot x_i \bmod n$$

We encode the plaintext in the exponent $m \rightarrow g^m$

$$\begin{aligned} \mathbf{c}_1 &= \mathbf{Enc}(pk, m_1) \text{ and } \mathbf{c}_2 = \mathbf{Enc}(pk, m_2) \\ \mathbf{Mul}(\mathbf{c}_1, \mathbf{c}_2) &= (\mathbf{c}_1[0] \cdot \mathbf{c}_2[0], \mathbf{c}_1[1] \cdot \mathbf{c}_2[1]) \\ &= (g^{m_1} \cdot pk^{r_1} \cdot g^{m_2} \cdot pk^{r_2}, g^{r_1} \cdot g^{r_2}) \\ &= (g^{m_1+m_2} \cdot pk^{r_1+r_2}, g^{r_1+r_2}) = \mathbf{c} \end{aligned}$$

$$\mathbf{Dec}(sk, \mathbf{c}) = m_1 + m_2$$

Not efficient for general case

Paillier Properties

Paillier(L):

KeyGen $\rightarrow (sk, pk)$:

$$p, q \leftarrow \mathbb{P}_L$$

$$n := pq$$

$$pk = (n, g = n + 1), sk = \phi(n)$$

Enc($pk, m \in \mathbb{Z}_n$) $\rightarrow c$

$$r \leftarrow \mathbb{Z}_n^*$$

$$c := g^m \cdot r^n \bmod n^2$$

Dec(sk, c) $\rightarrow m = \frac{(c^{sk} \bmod n^2)^{-1}}{n} sk^{-1} \bmod n$

Security – Security from the Decisional Composite Residuosity assumption:

Evaluation –

Correctness – Uses two facts

$$1. \forall x \in \mathbb{Z}_{n^2}^*, (x^n)^{\phi(n)} = 1 \bmod n^2$$

2. The base- g DL in $\mathbb{Z}_{n^2}^*$ is easy to compute

Textbook RSA Encryption Properties

RSA(L):

KeyGen \rightarrow (sk, pk) :

$p, q \leftarrow \mathbb{P}$ s.t. $\log(pq) \geq L$

$n := pq$, $e \leftarrow \mathbb{Z}_{\phi(n)}^*$

$pk = (n, e)$, $sk = e^{-1} \bmod \phi(n)$

Enc $(pk, m \in \mathbb{Z}_n^*) \rightarrow c = m^e \bmod n$

Dec $(sk, c) \rightarrow m = c^{sk} \bmod n$

Security – Security based on factoring hardness:

Given $n = pq$ s.t. $p, q \leftarrow \mathbb{P}$, find p and q

Equivalent to finding $\phi(n)$

Correctness –

Evaluation –

Compact –

Lattice-Based Constructions

Fully Homomorphic Encryption

A simple scheme for intuition

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen \rightarrow (sk, \cdot) :

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc $(\text{sk}, m \in \mathcal{R}_q) \rightarrow \mathbf{c}$

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec $(\text{sk}, \mathbf{c}) \rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Consider the polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$
i.e., **degree $N - 1$ polynomials with coefficients in \mathbb{Z}_q**

Fully Homomorphic Encryption

A simple scheme for intuition – Correctness

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen \rightarrow (\mathbf{sk}, \cdot) :

$$\mathbf{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc $(\mathbf{sk}, m \in \mathcal{R}_q) \rightarrow \mathbf{c}$

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \mathbf{sk} + m, a)$$

Dec $(\mathbf{sk}, \mathbf{c}) \rightarrow m$

$$m = \mathbf{c}[0] + \mathbf{sk} \cdot \mathbf{c}[1]$$

Consider the polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$
i.e., $N - 1$ polynomials with coefficients in \mathbb{Z}_q

Correctness – $\forall \mathbf{sk} \in \mathcal{R}_q$ and $\forall m \in \mathcal{R}_q$

$$\begin{aligned} \mathbf{Dec}(\mathbf{sk}, \mathbf{Enc}(\mathbf{sk}, m)) &= (-a \cdot \mathbf{sk} + m) + \mathbf{sk} \cdot a \\ &= (-as + m) + s \cdot a = m \end{aligned}$$

Fully Homomorphic Encryption

A simple scheme for intuition – Addition

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen \rightarrow (sk, \cdot) :

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc($\text{sk}, m \in \mathcal{R}_q$) \rightarrow \mathbf{c}

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk, \mathbf{c}) \rightarrow m

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Evaluation – $\forall \text{ sk} \in \mathcal{R}_q$ and $\forall m_1, m_2 \in \mathcal{R}_q$
 $\mathbf{c}_1 = \text{Enc}(\text{sk}, m_1)$ and $\mathbf{c}_2 = \text{Enc}(\text{sk}, m_2)$

Fully Homomorphic Encryption

A simple scheme for intuition – Addition

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen \rightarrow (sk, \cdot) :

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc(sk , $m \in \mathcal{R}_q$) \rightarrow \mathbf{c}

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk , \mathbf{c}) $\rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Evaluation – $\forall \text{sk} \in \mathcal{R}_q$ and $\forall m_1, m_2 \in \mathcal{R}_q$
 $\mathbf{c}_1 = \text{Enc}(\text{sk}, m_1)$ and $\mathbf{c}_2 = \text{Enc}(\text{sk}, m_2)$

- Addition

$$\begin{aligned} \mathbf{c}_1 + \mathbf{c}_2 &= (-a_1 \cdot \text{sk} + m_1, a_1) + (-a_2 \cdot \text{sk} + m_2, a_2) \\ &= (-a_1 \cdot \text{sk} + m_1 - a_2 \cdot \text{sk} + m_2, a_1 + a_2) \\ &= (-(a_1 + a_2) \cdot \text{sk} + m_1 + m_2, a_1 + a_2) \\ &= (-b \cdot \text{sk} + m_1 + m_2, b_{add}) \text{ with } b_{add} = a_1 + a_2 \end{aligned}$$

$$\mathbf{c}_1 + \mathbf{c}_2 = \text{Enc}(\text{sk}, m_1 + m_2)$$

$$\text{So } \text{Add}(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{c}_1 + \mathbf{c}_2$$

Fully Homomorphic Encryption

A simple scheme for intuition – Multiplication

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen \rightarrow (sk, \cdot) :

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc($\text{sk}, m \in \mathcal{R}_q$) \rightarrow \mathbf{c}

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk, \mathbf{c}) $\rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Evaluation – $\forall \text{sk} \in \mathcal{R}_q$ and $\forall m_1, m_2 \in \mathcal{R}_q$
 $\mathbf{c}_1 = \text{Enc}(\text{sk}, m_1)$ and $\mathbf{c}_2 = \text{Enc}(\text{sk}, m_2)$

- **Multiplication?**

$$\begin{aligned} \mathbf{c}_1 \cdot \mathbf{c}_2 &= (-a_1 \cdot \text{sk} + m_1, a_1) \cdot (-a_2 \cdot \text{sk} + m_2, a_2) \\ &= ((-a_1 \cdot \text{sk} + m_1) \cdot (-a_2 \cdot \text{sk} + m_2), a_1 \cdot a_2) \\ &= \text{sk}^2 a_1 a_2 - \text{sk}(a_1 m_2 + m_1 a_2) + m_1 m_2, a_1 \cdot a_2 \end{aligned}$$

Cross-terms that cannot be reconstructed at decryption!

Fully Homomorphic Encryption

A simple scheme for intuition – Multiplication

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen \rightarrow (sk, \cdot) :

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc($\text{sk}, m \in \mathcal{R}_q$) \rightarrow \mathbf{c}

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk, \mathbf{c}) $\rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Evaluation – $\forall \text{sk} \in \mathcal{R}_q$ and $\forall m_1, m_2 \in \mathcal{R}_q$
 $\mathbf{c}_1 = \text{Enc}(\text{sk}, m_1)$ and $\mathbf{c}_2 = \text{Enc}(\text{sk}, m_2)$

- **Multiplication?**

$$\begin{aligned} \mathbf{c}_1 \cdot \mathbf{c}_2 &= (-a_1 \cdot \text{sk} + m_1, a_1) \cdot (-a_2 \cdot \text{sk} + m_2, a_2) \\ &= ((-a_1 \cdot \text{sk} + m_1) \cdot (-a_2 \cdot \text{sk} + m_2), a_1 \cdot a_2) \\ &= \text{sk}^2 a_1 a_2 - \text{sk}(a_1 m_2 + m_1 a_2) + m_1 m_2, a_1 \cdot a_2 \end{aligned}$$

Cross-terms that cannot be reconstructed at decryption!

Fully Homomorphic Encryption

A simple scheme for intuition – Multiplication

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (\text{sk}, \cdot)$:

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc($\text{sk}, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk, \mathbf{c}) $\rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Evaluation – $\forall \text{sk} \in \mathcal{R}_q$ and $\forall m_1, m_2 \in \mathcal{R}_q$
 $\mathbf{c}_1 = \text{Enc}(\text{sk}, m_1)$ and $\mathbf{c}_2 = \text{Enc}(\text{sk}, m_2)$

- **Multiplication: Tensor product**

$$\mathbf{c} = \mathbf{c}_1 \times \mathbf{c}_2 = \begin{pmatrix} \mathbf{c}_1[0] \cdot \mathbf{c}_2[0] \\ \mathbf{c}_1[0] \cdot \mathbf{c}_2[1] + \mathbf{c}_1[1] \cdot \mathbf{c}_2[0] \\ \mathbf{c}_1[1] \cdot \mathbf{c}_2[1] \end{pmatrix}$$

$$\mathbf{c} = \mathbf{c}_1 \times \mathbf{c}_2 = \begin{pmatrix} \text{sk}^2 c_{mul} - \text{sk} b_{mul} + m_1 m_2 \\ -2 \text{sk} c_{mul} + b_{mul} \\ c_{mul} \end{pmatrix}$$

$$c_{mul} = a_1 \cdot a_2$$

$$b_{mul} = a_1 m_2 + m_1 a_2$$

Fully Homomorphic Encryption

A simple scheme for intuition – Multiplication

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (\text{sk}, \cdot)$:

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc($\text{sk}, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk, \mathbf{c}) $\rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Evaluation – $\forall \text{sk} \in \mathcal{R}_q$ and $\forall m_1, m_2 \in \mathcal{R}_q$
 $\mathbf{c}_1 = \text{Enc}(\text{sk}, m_1)$ and $\mathbf{c}_2 = \text{Enc}(\text{sk}, m_2)$

- **Multiplication: Tensor product + Decryption**

$$\mathbf{c}_1 \times \mathbf{c}_2 = \begin{pmatrix} \text{sk}^2 c_{mul} - \text{sk} b_{mul} + m_1 m_2 \\ -2 \text{sk} c_{mul} + b_{mul} \\ c_{mul} \end{pmatrix}$$

Define **Dec'_2**(sk, \mathbf{c}) $\rightarrow m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1] + \text{sk}^2 \cdot \mathbf{c}[2]$

This extend to larger depth.

Degree-2
ciphertext

Relinearization: converts
to degree 1-ciphertext

Fully Homomorphic Encryption

A simple scheme for intuition – Multiplication

FYI

IdealHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (\text{sk}, \cdot)$:

$$\text{sk} := s \leftarrow \$ \mathcal{R}_q$$

Enc($\text{sk}, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$

$$a \leftarrow \$ \mathcal{R}_q$$

$$\mathbf{c} := (-a \cdot \text{sk} + m, a)$$

Dec(sk, \mathbf{c}) $\rightarrow m$

$$m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$$

Compactness – Need for **relinearization**

We have seen that homomorphic multiplication **increases the size of the ciphertexts**.

Relinearization: converts a degree-2 ciphertext \mathbf{c} into a degree-1 ciphertext \mathbf{c}' .

Requires: a relinearization key $\text{rlk} = \text{Enc}(\text{sk}, \text{sk}^2)$

$$\mathbf{c}' = \text{Relin}(\text{rlk}, \mathbf{c}) = \begin{pmatrix} \mathbf{c}[0] + \mathbf{c}[2] \cdot \text{rlk}[0] \\ \mathbf{c}[1] + \mathbf{c}[2] \cdot \text{rlk}[1] \end{pmatrix}$$

Fully Homomorphic Encryption

A simple scheme for intuition – Summary

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

IdealHE:

KeyGen \rightarrow $(\mathbf{sk}, \mathbf{rlk})$:

$$\begin{aligned}\mathbf{rlk} &= \mathbf{Enc}(\mathbf{sk}, \mathbf{sk}^2) \\ \mathbf{sk} &:= s \leftarrow \$\mathcal{R}_q\end{aligned}$$

Enc $(\mathbf{sk}, m \in \mathcal{R}_q) \rightarrow \mathbf{c}$

$$\begin{aligned}a &\leftarrow \$\mathcal{R}_q \\ \mathbf{c} &:= (-a \cdot \mathbf{sk} + m, a)\end{aligned}$$

Relin $(\mathbf{rlk}, \mathbf{c}) = (\mathbf{c}[0], \mathbf{c}[1]) + \mathbf{c}[2] \cdot \mathbf{rlk}$

Dec $(\mathbf{sk}, \mathbf{c}) \rightarrow m = \mathbf{c}[0] + \mathbf{sk} \cdot \mathbf{c}[1]$

Add $(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{c}_1 + \mathbf{c}_2$

Mul $(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{Relin}(\mathbf{rlk}, \mathbf{c}_1 \times \mathbf{c}_2)$

Correctness –

Evaluation –

Compactness –

Public Key –

Security –

Fully Homomorphic Encryption

A simple scheme for intuition – Summary

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

IdealHE:

KeyGen \rightarrow $(\mathbf{sk}, \mathbf{rlk})$:

$$\begin{aligned} \mathbf{rlk} &= \mathbf{Enc}(\mathbf{sk}, \mathbf{sk}^2) \\ \mathbf{sk} &:= s \leftarrow \$\mathcal{R}_q \end{aligned}$$

Enc $(\mathbf{sk}, m \in \mathcal{R}_q) \rightarrow \mathbf{c}$

$$\begin{aligned} a &\leftarrow \$\mathcal{R}_q \\ \mathbf{c} &:= (-a \cdot \mathbf{sk} + m, a) \end{aligned}$$

Relin $(\mathbf{rlk}, \mathbf{c}) = (\mathbf{c}[0], \mathbf{c}[1]) + \mathbf{c}[2] \cdot \mathbf{rlk}$

Dec $(\mathbf{sk}, \mathbf{c}) \rightarrow m = \mathbf{c}[0] + \mathbf{sk} \cdot \mathbf{c}[1]$

Add $(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{c}_1 + \mathbf{c}_2$

Mul $(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{Relin}(\mathbf{rlk}, \mathbf{c}_1 \times \mathbf{c}_2)$

Correctness – Yes

Evaluation – Additions and Multiplications

Compactness – with **relinearization**

Public Key – Yes, $\mathbf{pk} = \mathbf{Enc}(\mathbf{sk}, 0)$ and $u \cdot \mathbf{pk}$ to **Enc** for $u \leftarrow \mathcal{R}_q$

Security –

Fully Homomorphic Encryption

A simple scheme for intuition – Summary

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

IdealHE:

KeyGen \rightarrow $(\mathbf{sk}, \mathbf{rlk})$:

$$\begin{aligned} \mathbf{rlk} &= \mathbf{Enc}(\mathbf{sk}, \mathbf{sk}^2) \\ \mathbf{sk} &:= s \leftarrow \$\mathcal{R}_q \end{aligned}$$

Enc $(\mathbf{sk}, m \in \mathcal{R}_q) \rightarrow \mathbf{c}$

$$\begin{aligned} a &\leftarrow \$\mathcal{R}_q \\ \mathbf{c} &:= (-a \cdot \mathbf{sk} + m, a) \end{aligned}$$

Relin $(\mathbf{rlk}, \mathbf{c}) = (\mathbf{c}[0], \mathbf{c}[1]) + \mathbf{c}[2] \cdot \mathbf{rlk}$

Dec $(\mathbf{sk}, \mathbf{c}) \rightarrow m = \mathbf{c}[0] + \mathbf{sk} \cdot \mathbf{c}[1]$

Add $(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{c}_1 + \mathbf{c}_2$

Mul $(\mathbf{c}_1, \mathbf{c}_2) = \mathbf{Relin}(\mathbf{rlk}, \mathbf{c}_1 \times \mathbf{c}_2)$

Correctness – Yes

Evaluation – Additions and Multiplications

Compactness – with **relinearization**

Public Key – Yes, $\mathbf{pk} = \mathbf{Enc}(\mathbf{sk}, 0)$ and $u \cdot \mathbf{pk}$ to **Enc** for $u \leftarrow \mathcal{R}_q$

Security – **No!** The problem is not hard. We need the error!

Lattice-Based Homomorphic Encryption

Background on lattices

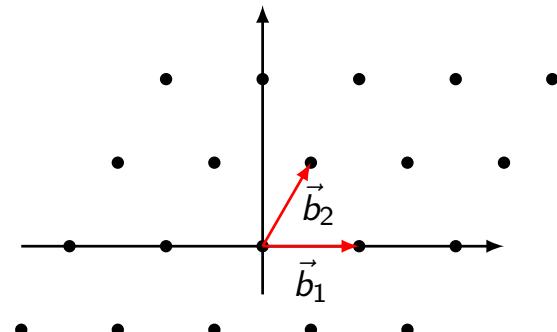
FYI

A lattice is a mathematical object: a subset of \mathbb{R}^n that is an additive subgroup and discrete

There exists many problems deemed hard related to lattices

e.g., Shortest Vector Problem: find non-zero vector of low norm

- Large mathematical objects
- Several lattice-based hard problems
- Assumed quantum resistant for appropriate parametrization



$$\mathcal{L} = \left\{ \sum_{i=1}^n z_i \vec{b}_i \mid z_i \in \mathbb{Z} \right\}$$

Ring learning with error Intuition

Define $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$ Degree $N - 1$ polynomials with coefficients in \mathbb{Z}_q

Given a secret vector $s \in \mathcal{R}_q$, the $\text{RLWE}_{\mathcal{R}_q, \chi}^s$ distribution outputs:

$$(a \ b) = (a, as + e) \in \mathcal{R}_q^2$$

where $\vec{a} \leftarrow \mathcal{R}_q$ and $e \leftarrow \chi$ $m = \text{poly}(n)$, appropriate q , and χ of error rate $\alpha < 1$

Cannot distinguish between $\text{RLWE}_{\mathcal{R}_q, \chi}^s$ and a uniform distribution

Ring learning with error-based FHE scheme

Issue with correctness

FHE:

KeyGen $\rightarrow (\text{sk}, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $\text{sk} := s \leftarrow \$ \mathcal{R}_q$

Enc(sk , $m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$
 $\mathbf{c} := (-a \cdot \text{sk} + m, a)$

Dec(sk , \mathbf{c}) $\rightarrow m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

Idea: add noise everywhere!

$$(a, b) = (a, as + e) \in \mathcal{R}_q^2 \text{ with } \vec{a} \leftarrow \mathcal{R}_q \text{ and } e \leftarrow \chi$$

Informal: RLWE assumption says this is indistinguishable from $(a, b \leftarrow \$ \mathcal{R}_q)$.

Ring learning with error-based FHE scheme

Issue with correctness

FHE:

KeyGen $\rightarrow (\text{sk}, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $\text{sk} := s \leftarrow \$ \mathcal{R}_q$

Enc($\text{sk}, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot \text{sk} + e_{enc} + m, a)$

Dec(sk, \mathbf{c}) $\rightarrow m = \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

Idea: add noise everywhere!

$$(a, b) = (a, as + e) \in \mathcal{R}_q^2 \text{ with } \vec{a} \leftarrow \mathcal{R}_q \text{ and } e \leftarrow \chi$$

Correctness – $\forall \text{sk} \in \mathcal{R}_q$ and $\forall m \in \mathcal{R}_q$

$$\begin{aligned} \text{Dec}(\text{sk}, \text{Enc}(\text{sk}, m)) &= (-a \cdot \text{sk} + e_{enc} + m) + \text{sk} \cdot a \\ &= (-as + e_{enc} + m) + s \cdot a \\ &= e_{enc} + m \neq m \end{aligned}$$

We need to perform error correction:

1. Message scaling
2. Noise scaling

Ring learning with error-based FHE scheme

Adding error correction – message scaling

FHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (\text{sk}, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $\text{sk} := s \leftarrow \$ \mathcal{R}_q$

Enc(sk , $m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot \text{sk} + e_{enc} + \Delta m, a)$

Dec(sk , \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

Let $\Delta \in \mathbb{Z}_q$ be a positive factor less than q .

If $\Delta > 2e$ and $\Delta m < q$, then the division and rounding remove the error.

We now have correctness again!

Ring learning with error-based FHE scheme

Adding error correction – message scaling

FHE:

KeyGen $\rightarrow (\text{sk}, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $\text{sk} := s \leftarrow \$ \mathcal{R}_q$

Enc($\text{sk}, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot \text{sk} + e_{enc} + \Delta m, a)$

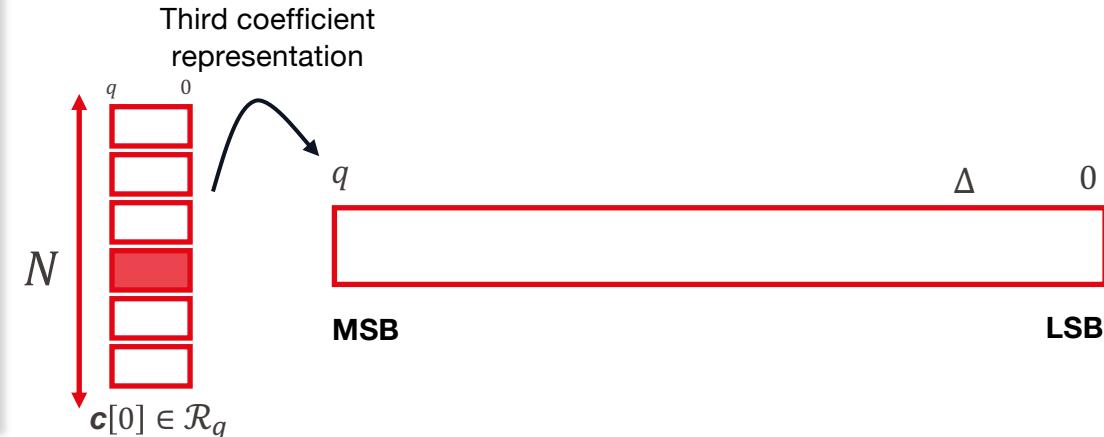
Dec(sk, \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

Let us look at the **impact** of the scale Δ

Consider the following representation of the polynomial coefficients



Ring learning with error-based FHE scheme

Adding error correction – message scaling

FHE:

KeyGen $\rightarrow (sk, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $sk := s \leftarrow \$ \mathcal{R}_q$

Enc($sk, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot sk + e_{enc} + \Delta m, a)$

Dec(sk, \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + sk \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

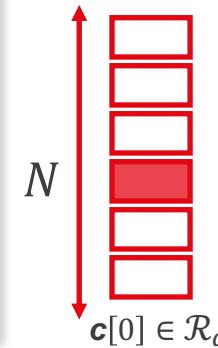
For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

Let us look at the **impact** of the scale

We display the scaled message m and the encryption noise e_{enc}

Third coefficient representation



Ring learning with error-based FHE scheme

Adding error correction – message scaling

FHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (\text{sk}, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $\text{sk} := s \leftarrow \$ \mathcal{R}_q$

Enc($\text{sk}, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot \text{sk} + e_{enc} + \Delta m, a)$

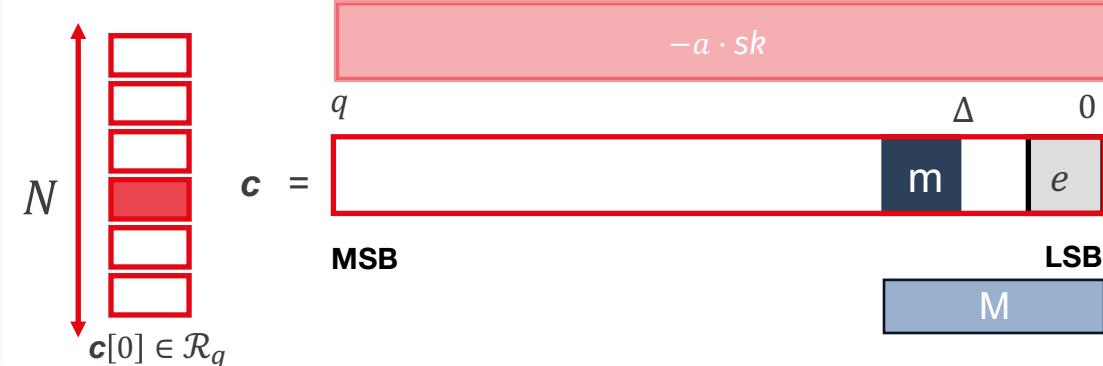
Dec(sk, \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Let us look at the **impact** of the scale

We now add the masking

Third coefficient representation



Ring learning with error-based FHE scheme

Adding error correction – message scaling and Ops

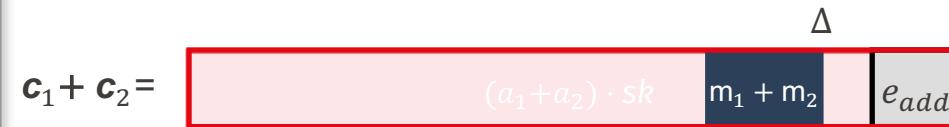
FHE:

KeyGen $\rightarrow (sk, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $sk := s \leftarrow \$ \mathcal{R}_q$

Enc($sk, m \in \mathcal{R}_q$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot sk + e_{enc} + \Delta m, a)$

Dec(sk, \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + sk \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products



The noise growth is linear in the #add in the worst case.

The noise growth is quadratically in the #mult in the worst case.
Output message scaled by Δ^2

Ring learning with error-based FHE scheme

Adding error correction – message scaling and Ops

FHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (sk, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $sk := s \leftarrow \$ \mathcal{R}_q$

Enc($sk, m \in \mathcal{R}$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot sk + e_{enc} + \Delta m, a)$

Dec(sk, \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + sk \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

For simplicity, the relinearization and PKE have been omitted. In practice,
 Disclaimer: it is non-trivial to enable relinearization: use gadgets products

What can we do? – Noise management

Ring learning with error-based FHE scheme

Adding error correction – message scaling and Ops

FHE:

$$\mathcal{R}_q = \mathbb{Z}_q[X]/(X^N + 1)$$

KeyGen $\rightarrow (\text{sk}, \cdot)$: $a, b \leftarrow \mathcal{R}_q$
 $\text{sk} := s \leftarrow \$ \mathcal{R}_q$

Enc($\text{sk}, m \in \mathcal{R}_t$) $\rightarrow \mathbf{c}$
 $a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi$
 $\mathbf{c} := (-a \cdot \text{sk} + e_{enc} + \Delta m, a)$

Dec(sk, \mathbf{c}) $\rightarrow m$
 $M := \mathbf{c}[0] + \text{sk} \cdot \mathbf{c}[1]$
 $m := \lfloor M/\Delta \rfloor$

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

What can we do? – Noise management

1. Select Δ wisely:

Encrypt messages in \mathcal{R}_t , $t \ll q$. Set $\Delta = \lfloor \frac{q}{t} \rfloor$

2. Rescale from Δ^2 needed (multiply by $\frac{t}{q}$ in \mathcal{R})

3. Perform noise refresh: Bootstrapping

Ring learning with error-based FHE scheme

Summary

72

Correctness – Yes

Evaluation – Additions and Multiplications

Compactness – with **relinearization**

Security – RLWE assumption

Note:

- Modulus q is large: **decompose** it in smaller primes (Chinese remainder Theorem)
- Plaintext space is \mathcal{R}_t : **batch** N values in \mathbb{Z}_t
- By selecting appropriate parameters, enable **fast multiplication** and **SIMD**

*Amortize operations!
Pack as much as possible*

FHE:

KeyGen $\rightarrow (\text{sk}, \text{pk}, \text{rlk})$:

$\text{sk} := s \leftarrow \$ \mathcal{R}_q$

$\text{rlk} = \text{GenRLK}(\text{sk})$ $\text{rlk} = \text{GenPK}(\text{sk})$

Enc($\text{sk}, m \in \mathcal{R}_t$) $\rightarrow \mathbf{c}$

$a \leftarrow \$ \mathcal{R}_q$ $e_{enc} \leftarrow \chi, \Delta = \lfloor \frac{q}{t} \rfloor$

$\mathbf{c} := (-a \cdot \text{sk} + e_{enc} + \Delta m, a)$

Relin(rlk, \mathbf{c}) $\rightarrow \mathbf{c}'$

Dec(sk, \mathbf{c}) $\rightarrow m$

Add($\mathbf{c}_1, \mathbf{c}_2$) $= \mathbf{c}_1 + \mathbf{c}_2$

Mul($\mathbf{c}_1, \mathbf{c}_2$) $= \text{Relin}(\text{rlk}, \mathcal{R}(\mathbf{c}_1 \times \mathbf{c}_2) / \Delta)$

SIMD: single input multiple data

FHE in Practice

Challenges

1. Selecting cryptographic parameters

Interdependencies between N, q, t , and χ

Relies on estimators to assess the hardness

2. Circuit definition

How to represent functions into circuits

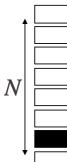
Minimize the multiplicative depth

Optimize the costly operations (bootstrap, rescale, etc.)

3. Bearing with the costs

FHE induces both computation and communication overhead

Not all plaintexts space can be easily handled



Naïve operation

$$\underbrace{((m_1 \cdot m_2) \cdot m_3) \cdot m_4}_{\substack{+e \\ +e^2 \\ +e^3}}$$

Optimization

$$\underbrace{(m_1 \cdot m_2) \cdot (m_3 \cdot m_4)}_{\substack{+e \\ +e \\ +e^2}}$$

FHE in Practice

Parameterization

74

- **Dimension N:** between 2^{11} and 2^{16}
- **Ciphertext space:** \mathcal{R}_q with q 100s of bits
- **Message space:** t application dependent

polynomial size (keys, ciphertexts)

coefficient size of ciphertexts

can be as small as 20 bits

Example: compute Squared Distance between two 2D

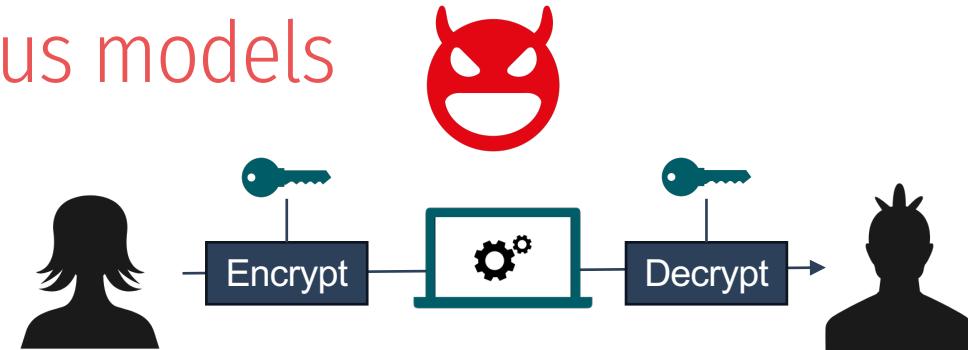
- $\log N = 13, \log q = 218, \log t = 16$
- One ciphertext: 450kB
- **Setup:** 7.4 ms
- **Encode + Enc 1 vector:** 2.7 ms
- **Eval:** 7 ms
- **Dec + Decode:** 2 ms

*But costs can quickly go up!
For example for $\log N = 15$
and depth 16, you might
need >100ms for one
multiplication*

FHE in Practice

Extension to malicious models

75



Malicious threat model?

So far, the evaluator can only **evaluate** the function on the input it receives.

In reality, evaluator could be:

- **Honest but Curious:** Parties will follow the HE protocol honestly, but try to learn as much as possible from the messages they receive
- **Malicious:** Parties can arbitrarily deviate from the HE protocol to learn as much as possible

⇒ **Requires heavy machinery e.g., Zero-Knowledge Proofs**

Homomorphic Encryption

Other resources

Survey on Fully Homomorphic Encryption, Theory, and Applications

Chiara Marcolla, Victor Sucasas, Member, IEEE, Marc Manzana, Ricardo Bassoli, Member, IEEE,
Frank H.P. Fitzek, Senior Member, IEEE and Naijia Auer

C. Marcolla et al. "Survey on fully homomorphic encryption, theory, and applications." *Proc. of the IEEE* 2022

SoK: Fully Homomorphic Encryption Compilers

Alexander Viand
ETH Zurich
alexander.viand@inf.ethz.ch

Patrick Jattke
ETH Zurich
jattke@ethz.ch

ETH Zurich
 anwar.hithnawi@inf.ethz.ch

services, coupled with a plague of data breaches, moved high-profile businesses to increasingly demand FHE. This, in turn, has led to recent progress in the development of FHE tools. To understand the landscape of recent FHE tools, we conducted an extensive review and experimental evaluation to explore the current state of the art and identify areas for future development.

I. INTROD

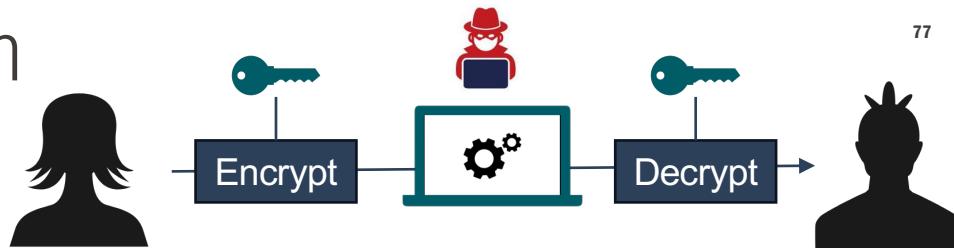
Recent years have seen unprecedented growth in the use of cloud computing services. As governments and other highly regulated businesses and organisations (e.g., banks, governments, insurance, health care) store data securely in the cloud, more data will move to the cloud. This growth has led to a sharp increase in demand for secure and confidential cloud solutions that protect data confidentiality while meeting demand and, in-use. This is in the light of the numerous reports of data breaches (e.g., [2]), and Homomorphic Encryption (FHE) is a key technology to enable for secure computation and has a strong potential to be practical for real-world use [3–9].

FHE allows arbitrary computations to be performed on encrypted data, eliminating the need to decrypt the data and expose it to potential risk while in use. While first proposed in the 1970s [10], FHE was long considered impossible or impractical. However, recent breakthroughs in the underlying theory, general-purpose improvements, and more efficient implementations, it has become increasingly practical. In 2009, breakthrough work from Craig Gentry proposed the first fully homomorphic scheme [11]. In the last decade, FHE has gone from a theoretical concept to reality, with performance improving by up to five orders of magnitude. For example, times for a multiplication between ciphertexts dropped from 30 minutes to less than 20 milliseconds. While this is still around

A. Viand et al. "SoK: Fully homomorphic encryption compilers." 2021 IEEE SP

Homomorphic Encryption Conclusion

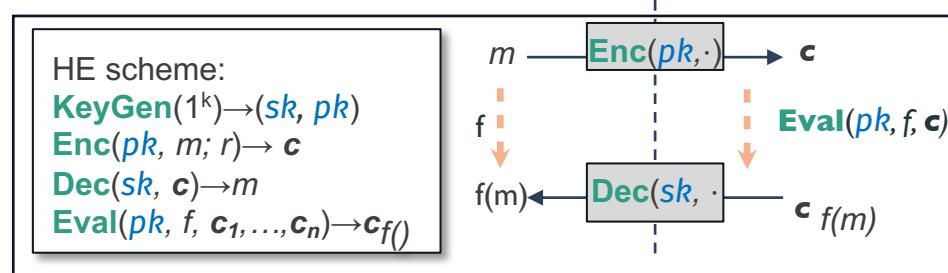
77



Enables computation over encryption

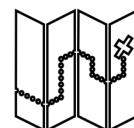
Has become increasingly practical

Modern lattice-based schemes plausibly quantum resistant

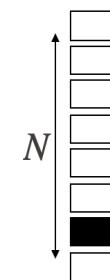


Challenges:

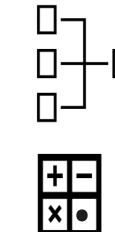
Parameters selection



Plaintext encoding



Amortization



Circuit design

Noise management

References

Software Libraries

- [HElib] <https://github.com/shaih/HElib> Halevi and Shoup
- [SEAL] <https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/> SEAL
- [NFLlib] <https://github.com/quarkslab/NFLlib> French consortium
- [HEAAN] <https://github.com/kimandrik/HEAAN> Korean researchers
- [TFHE] <https://tfhe.github.io/tfhe/> inpher + French researchers
- [PALISADE] <https://git.njit.edu/palisade/PALISADE> New Jersey Institute of Technology
- [cuHE] <https://github.com/vernamlab/cuHE>
- [Lattigo] <https://github.com/tuneinsight/lattigo>
- [OpenFHE] <https://openfhe.org/>
- [TFHE-rs] <https://docs.zama.ai/tfhe-rs>