
Homomorphic Encryption
CS523 2025

Sylvain Chatel | March 04, 2025 | v1.0.2
Some slides/ideas adapted from C. Mouchet, D. Fiore, JP Hubaux, C. Troncoso, and W. Lueks

Introduction
Homomorphic encryption

2

Lecture aim: study the cryptographic technique and related
toolbox for privacy engineering

tool
for building PETS

cryptographic
primitive

Network Layer

Application Layer

Goals
What should you learn today?

3

§ Basic understanding of homomorphic encryption
§ Understand when to use homomorphic encryption
§ Understand key properties:

• Communication and computation cost
• Trust assumptions
• Guarantees with respect to inputs

§ Understand practical issues when using homomorphic encryption

Introduction
Encryption

4

Encrypt Decrypt

Alice Bob

Encryption aims at data confidentiality
In transit
In storage

Introduction
Encryption

5

Encryption aims at data confidentiality
In transit
In storage

Homomorphic Encryption aims at also confidentiality in computation

Encrypt Decrypt

Alice Bob

Introduction
Encryption

6

Encrypt Decrypt

Alice Bob

Encryption aims at data confidentiality
In transit
In storage

Homomorphic Encryption aims at also confidentiality in computation

Health Data
Analysis

Financial Fraud
Prevention

Govt Data: e.g.,
demographics,

vote, etc.

7

§ A cryptographic primitive that enables
the computation of functions in the
encrypted domain

Input: Enc(x)

Output: Enc(F(x))
Untrusted party

privacy-wise
(typically a cloud)

Overview
Homomorphic encryption

Alice

Server

8

§ A cryptographic primitive that enables
the computation of functions in the
encrypted domain

Overview
Homomorphic encryption

§ Security property: the computing
party cannot learn any information
about the input or output

§ Correctness: output is correct

§ Threat Model: usually Honest-but-
Curious

Input: Enc(x)

Output: Enc(F(x))
Untrusted party
privacy-wise

(typically a cloud)

Alice

Server

9Overview
Homomorphic Encryption System Model

Alice

Homomorphic encryption: classically, has one computing party, and
• one party providing the input and reading the result, or

Server

10

Homomorphic encryption: classically, has one computing party, and
• one party providing the input and reading the result, or
• n parties providing the input and another reading the result, or
• n parties providing data and learning the result (not in this class)

Overview
Homomorphic Encryption System Model

Alice

Server

Server

What about Alternatives?
NDAs, SMC, TEE

11

Non-Disclosure
Agreements

Low tech

Lengthy Process

Limited protection

Secret Sharing-
SMC

Non-collusion assumption
If they do, they can
join their shares and
recover all the secrets!

Hard to find in practice

Trusted
Execution Env.

Trust in manufacturer
Can be vulnerable to
physical attacks

Dec

Enc

M
EM

O
RYDec

Enc

Dec

Enc
SGX

Homomorphic Encryption
Objectives Consolidated

12

Enable computation on encrypted data
- Computation performed before decryption
- Decryption key known only to the receiver

Outsourced computation setting: party with data provides an
encrypted version of the data to a single untrusted computation
party (a server). No need for a non-collusion assumption.

Rely on solely on the security of the cryptographic primitives

Homomorphic Encryption
History

13

Privacy Homomorphism

1978 Rivest et al.

Homomorphic Encryption
History

14

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

1985, El Gamal

1999, Paillier

- RSA 1977: modular multiplication
- Goldwasser-Micali: XOR
- El Gamal: modular multiplication
- Paillier: modular addition

Homomorphic Encryption
History

15

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

1985, El Gamal

1999, Paillier

2009, Gentry

Homomorphic Encryption
History

16

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

1985, El Gamal

1999, Paillier

2009, Gentry

2011-Present , RLWE Constructions

- Lattice-based schemes (e.g., BGV, BFV, CGGI, CKKS)
- Many libraries (e.g., Helib, SEAL, HEAAN, PALISADE, OpenFHE, Lattigo, TFHE-rs.
- Standardization 2017-soon

https://homomorphicencryption.org/

Homomorphic Encryption
Applications

17

Apple Live Caller ID - iOS18 Tune Insight Federated
Learning

Zama confidentiality for
Etherium

Example application
Privacy-preserving statistics on medical data

18

StatisticianHospitals

Enc

Enc
Eval

f

Dec

§ Goal: a statistician wants to compute statistics on joint data from several hospitals
§ Privacy concern: single data entries are privacy-sensitive patients’ data
§ Using a cloud server and FHE

•Hospitals store encrypted patients’ data on the cloud
•Cloud compute statistics on joint (encrypted) datasets. Statistician decrypts results

Definitions and
Properties

20

21

Key: sk
Input: m

Key: sk
Output: m = Dec(sk,c)

Alice
Bob

Symmetric encryption:
parties share the same secret key sk

c = Enc(sk,m)
Input: m
Key: pk

Output: m = Dec(sk,c)
Key: sk

Alice Bob

Public key encryption (PKE): parties have a
secret key sk (sometimes: decryption key) and a
public key pk (sometimes: encryption key)

c = Enc(pk, m)

Formal definition
Cryptographic Notation

KeyGen(1k)→(sk, pk) Generates a private/public key pair for a security parameter k
Enc(pk, m; r)→c Encrypt the message m with randomness r to a ciphertext c
Dec(sk, c)→m Decrypt a ciphertext m to obtain the message m

A homomorphic encryption scheme is given by the following four algorithms:

§ KeyGen(1k)→(sk, pk) Generates a private/public key pair for a security parameter k
§ Enc(pk, m; r)→c Encrypt the message m with randomness r to a ciphertext c
§ Dec(sk, c)→m Decrypt a ciphertext c to obtain the message m
§ Eval(pk, f, c1,…,cn)→c’ Evaluate function f on the encrypted input ci to obtain

a new ciphertext c’
Eval() is what makes HE different from standard PK encryption

(in some schemes Eval uses a special key evk instead of pk. If this is the case, then KeyGen generates a triplet)

(The KeyGen and Enc are randomized algorithms. The randomness parameter is often implicit)

22Formal definition
Homomorphic encryption

23Properties
Homomorphic encryption

Correctness

Security

Evaluation correctness

Composition

Compactness

Encrypt Decrypt

Alice Bob

Correctness – intuition:

24Homomorphic Encryption
Encryption Correctness

Dec(sk, ⋅)
m c

Enc(pk,⋅)

Correctness – intuition: applying the deterministic decryption
function to the randomized encryption always returns the initial
plaintext.

Correctness.

∀ r∈ Rand, ∀ m ∈ P and (sk, pk)←KeyGen(1k):
Dec(sk, Enc(pk, m; r)) = m

Dec(sk, ⋅) is the deterministic inverse of the randomized Enc(pk, ⋅) function

P is the plaintext space and Rand a source of randomness

25Homomorphic Encryption
Encryption Correctness

Dec(sk, ⋅)
m c

Enc(pk,⋅)

26Homomorphic Encryption
Homomorphic Correctness

Objective: Evaluate the plaintext function f over the encryption in the
ciphertext space

m c

c f(m)
f(m)

Eval(pk, f, c)f

Enc(pk,⋅)

Recall an HE scheme:
KeyGen(1k)→(sk, pk)
Enc(pk, m; r)→ c
Dec(sk, c)→m
Eval(pk, f, c)→cf() Dec(sk, ⋅)

27Homomorphic Encryption
Wait… Homomorphic?

Homomorphism: mapping between two sets that preserves their
algebraic structure

For an additive HE scheme, Dec(sk, ⋅): 𝓒→ P is an homomorphism between
(𝓒, Eval.Add) and (P, +)

Group homomorphism
Given two groups (G, +), (H, ⊠)

h: G →H is a group-homomorphism if ∀x, y ∈ G:

h(x + y) = h(x) ⊠ h(y)

A group consists of a set of elements and one operation that combines two elements of the set into another element of the set (operation must be
associative, there is an identity element, and all elements have inverse)
A ring consists of a set of elements and two operations that combine two elements of the set into another element of the set (multiplication does not need
to be commutative, and does not need inverse)

Objective: Evaluate the plaintext function f over the encryption in the
ciphertext space

For a set 𝓕 of admissible functions

∀m∈P, ∀f∈ 𝓕, and
(sk, pk)←KeyGen(1k):

Dec(sk, Eval(pk, f, Enc(pk, m))) = f(m)

28Homomorphic Encryption
Homomorphic Correctness

m c

c f(m)
f(m)

Eval(pk, f, c)f

Dec(sk, ⋅)

Enc(pk,⋅)

This definition is
relaxed in practice

Security – intuition:

29Homomorphic Encryption
Security

Dec(⋅)Enc(⋅)

Security – intuition: The adversary learns nothing from the
ciphertexts and public keys

How do we capture this?

Game-based security definition: method to capture a security definition
using a game between an adversary and a challenger. If the adversary
has a non-negligible advantage to win the game, the adversary “breaks”
the security property.

30Homomorphic Encryption
Security

Dec(⋅)Enc(⋅)

31

(sk, pk)←KeyGen(1k)
(m0, m1)← 𝒜(pk) // adversary chooses two messages
b←{0,1}; // random bit is chosen
c←Enc(pk, mb) // message b is encrypted
b’← 𝒜(c) // adversary must figure out b

sk, pk

Enc(pk, mb)

m0, m1

b←{0,1}

b’

If b’=b adversary wins

pkpk

Game-based security: is a method to capture a security definition using a game between an adversary
and a challenger. If the adversary wins the game, the adversary “breaks” the security property.

Alice

Semantic security – intuition

seeing encryption of messages
does not give the adversary
information that helps them
guessing the encrypted message
better than random guess

Semantic security. HE is secure if ½-Pr[b’ = b] = negl(k)

Semantic security (IND-CPA) of
Homomorphic encryption

FYI

32Homomorphic Encryption
Is this an HE scheme?

KeyGen(1k) = PKE.KeyGen(1k)

Enc(pk, m) = {cPKE = PKE.Enc(pk, m); return c=(cPKE, nil)}

Eval(pk, f, c) = {cPKE = c[0]; return (cPKE, f)}

Dec(sk, c) = {cPKE, f ⟵ c; return f(PKE. Dec(sk, cPKE))}

Consider the following scheme built on top of a IND-CPA secure PKE scheme:

1. Is it correct Encryption scheme?
2. Is it IND-CPA secure?
3. Is it useful?

33Homomorphic Encryption
Is this an HE scheme?

1. Is it correct Encryption scheme? Yes, straightforward from the decryption
2. Is it IND-CPA secure? Yes, as it would break the IND-CPA from PKE
3. Is it useful? No, the evaluation of f is performed at decryption...

KeyGen(1k) = PKE.KeyGen(1k)

Enc(pk, m) = {cPKE = PKE.Enc(pk, m); return c=(cPKE, nil)}

Eval(pk, f, c) = {cPKE = c[0]; return (cPKE, f)}

Dec(sk, c) = {cPKE, f ⟵ c; return f(PKE. Dec(sk, cPKE))}

Consider the following scheme built on top of a IND-CPA secure PKE scheme:

Compactness – intuition: the ciphertext size should not be growing
through homomorphic operations
Compactness. HE compactly evaluates a family of functions 𝓕 if

∀(sk, pk)←KeyGen(1k), ∀ f ∈ 𝓕, ∀mi∈P:

There exists a polynomial p() such that the size of

|Eval(pk,f,c1,…,cn)|< p(k), with k the security parameter, independent of f();

i.e., the complexity of Dec is independent of f().

34Homomorphic Encryption
Compactness

This definition is
relaxed in practice

35Homomorphic Encryption
Composition

Composition – intuition: Build HE computation from a set of
simple operation (think Circuits and CPU)
Define Eval as circuit of simple “gates”. E.g., Boolean Algebra

Figure copied from Christian Mouchet’s Course on Computing on Encrypted Data – HPI 2024

Boolean Algebra & Binary Circuit

↭ Probably the most basic form of computation is binary and Boolean algebra.
↭ It is very simple, but enable building new function by composition.

x0 x1 AND(x0, x1)
0 0 0
0 1 0
1 0 0
1 1 1

x0 x1 OR(x0, x1)
0 0 0
0 1 1
1 0 1
1 1 1

AND
x0
x1

y

OR
x0
x1

y

AND
OR

x0
x1 y

x0 x1 OR(AND(x0, x1), x1)
0 0 0
0 1 1
1 0 0
1 1 1

v1.0 54/178

Eval.AND

Eval.OR

36Homomorphic Encryption
Composition

Composition – intuition: Build HE computation from a set of
simple operation (think Circuits and CPU)
∀f∈ 𝓕, f: Pn → P, ∀ (m1,…, mn) ∈ Pn, (sk, pk)←KeyGen(1k), and ∀i ∈[n] ci = Enc(pk, mi)

- Correctness for n-ary functions:
Dec(sk, Eval(pk, f, c1,…,cn) = f(m1 , … , mn)

- Composability:
Dec(sk, Eval(pk, f, c1,…,cn) = f(Dec(sk, c1), … , Dec(sk, cn))

Informally extends correctness to any valid ciphertext (fresh or Eval)

37Homomorphic Encryption
Summary of the properties
∀f∈ 𝓕, f: Pn → P, ∀ (m1,…, mn) ∈ Pn,
(sk, pk)←KeyGen(1k), and ∀i ∈[n] ci = Enc(pk, mi)

Correctness
Dec(sk, Enc(pk, m1)) = f(m1)

IND-CPA Security
Adv !",𝒜

%&'()*+ = negl(k)

Evaluation correctness and composition
Dec(sk, Eval(pk, f, c1,…,cn) = f(m1 , … , mn)
Dec(sk, Eval(pk, f, c1,…,cn) = f(Dec(sk, c1), … , Dec(sk, cn))

Compactness
|Eval(pk,f,c1,…,cn)|< p(k) for p polynomial Independent of f

m c

c f(m)
f(m)

Eval(pk, f, c)f

Dec/Enc

Enc/Dec

HE scheme:
KeyGen(1k)→(sk, pk)
Enc(pk, m; r)→ c
Dec(sk, c)→m
Eval(pk, f, c1,…,cn)→cf()

Constructions

38

39

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

1985, El Gamal

1999, Paillier

2009, Gentry

2011-Present, RLWE Constructions

We will cover
- RSA
- El Gamal
- Paillier
- RLWE

Homomorphic Encryption
History

40

Security – Security from the Discrete Logarithm:
Given 𝑔 and 𝑦 = 𝑔" mod p, find 𝑥

Correctness –
Dec(sk, Enc(pk, m)) = Dec(sk, (m ⋅ pkr, 𝑔r))

= m ⋅ pkr ⋅ (𝑔r)!sk = m ⋅ 𝑔r⋅sk ⋅ (𝑔r)!sk = m
Evaluation – Component-wise ___________

c#= Enc(pk, m#) and c$= Enc(pk, m$)
Mul(c#, c$) = (c# 0 ⋅ c$ 0 , c# 1 ⋅ c$ 1)

= (m# ⋅ pkr! ⋅m$ ⋅ pkr" , 𝑔r! ⋅ 𝑔r")
= (m# ⋅m$ ⋅ pkr!%r" , 𝑔r!%r")=c

Dec(sk, c) = m# ⋅m$

Compact –

ElGamal(G, 𝑔):
Let G be a cyclic group of order q=|G|
generated by 𝑔

KeyGen→(sk, pk):
sk ⟵${1,…, q-1}, pk=𝑔sk

Enc(pk, m ∈ G)→ c
r ⟵${1,…, q-1}
c ≔ (m ⋅ pkr, 𝑔r)

Dec(sk, c)→m
m ≔ c[0] /c[1]sk

El Gamal Encryption
Properties

41

Security – Security from the Discrete Logarithm:
Given 𝑔 and 𝑦 = 𝑔" mod p, find 𝑥

Correctness – Follows by definition
Dec(sk, Enc(pk, m)) = Dec(sk, (m ⋅ pkr, 𝑔r))

= m ⋅ pkr ⋅ (𝑔r)!sk = m ⋅ 𝑔r⋅sk ⋅ (𝑔r)!sk = m
Evaluation – Component-wise ___________

c#= Enc(pk, m#) and c$= Enc(pk, m$)
Mul(c#, c$) = (c# 0 ⋅ c$ 0 , c# 1 ⋅ c$ 1)

= (m# ⋅ pkr! ⋅m$ ⋅ pkr" , 𝑔r! ⋅ 𝑔r")
= (m# ⋅m$ ⋅ pkr!%r" , 𝑔r!%r")=c

Dec(sk, c) = m# ⋅m$

Compact – yes

ElGamal(G, 𝑔):
Let G be a cyclic group of order q=|G|
generated by 𝑔

KeyGen→(sk, pk):
sk ⟵${1,…, q-1}, pk=𝑔sk

Enc(pk, m ∈ G)→ c
r ⟵${1,…, q-1}
c ≔ (m ⋅ pkr, 𝑔r)

Dec(sk, c)→m
m ≔ c[0] /c[1]sk

El Gamal Encryption
Properties

42

Security – Security from the Discrete Logarithm:
Given 𝑔 and 𝑦 = 𝑔" mod p, find 𝑥

Correctness – Follows by definition
Dec(sk, Enc(pk, m)) = Dec(sk, (m ⋅ pkr, 𝑔r))

= m ⋅ pkr ⋅ (𝑔r)!sk = m ⋅ 𝑔r⋅sk ⋅ (𝑔r)!sk = m
Evaluation – Component-wise multiplication

c#= Enc(pk, m#) and c$= Enc(pk, m$)
Mul(c#, c$) = (c# 0 ⋅ c$ 0 , c# 1 ⋅ c$ 1)

= (m# ⋅ pkr! ⋅m$ ⋅ pkr" , 𝑔r! ⋅ 𝑔r")
= (m# ⋅m$ ⋅ pkr!%r" , 𝑔r!%r")=c

Dec(sk, c) = m# ⋅m$

Compact –

ElGamal(G, 𝑔):
Let G be a cyclic group of order q=|G|
generated by 𝑔

KeyGen→(sk, pk):
sk ⟵${1,…, q-1}, pk=𝑔sk

Enc(pk, m ∈ G)→ c
r ⟵${1,…, q-1}
c ≔ (m ⋅ pkr, 𝑔r)

Dec(sk, c)→m
m ≔ c[0] /c[1]sk

El Gamal Encryption
Properties

43

Security – Security from the Discrete Logarithm:
Given 𝑔 and 𝑦 = 𝑔" mod p, find 𝑥

Correctness – Follows by definition
Dec(sk, Enc(pk, m)) = Dec(sk, (m ⋅ pkr, 𝑔r))

= m ⋅ pkr ⋅ (𝑔r)!sk = m ⋅ 𝑔r⋅sk ⋅ (𝑔r)!sk = m
Evaluation – Component-wise multiplication

c#= Enc(pk, m#) and c$= Enc(pk, m$)
Mul(c#, c$) = (c# 0 ⋅ c$ 0 , c# 1 ⋅ c$ 1)

= (m# ⋅ pkr! ⋅m$ ⋅ pkr" , 𝑔r! ⋅ 𝑔r")
= (m# ⋅m$ ⋅ pkr!%r" , 𝑔r!%r")=c

Dec(sk, c) = m# ⋅m$

Compact – yes

ElGamal(G, 𝑔):
Let G be a cyclic group of order q=|G|
generated by 𝑔

KeyGen→(sk, pk):
sk ⟵${1,…, q-1}, pk=𝑔sk

Enc(pk, m ∈ G)→ c
r ⟵${1,…, q-1}
c ≔ (m ⋅ pkr, 𝑔r)

Dec(sk, c)→m
m ≔ c[0] /c[1]sk

El Gamal Encryption
Properties

44

Useful plaintext space:
(ℤ # , +) closed additive group of integers modulo 𝑛.

Supports any linear combination:
f 𝑥$, … , 𝑥ℓ = ∑&'$ℓ 𝛿(⋅ 𝑥(mod 𝑛

We encode the plaintext in the exponent m → 𝑔m

AddElGamal(G, 𝑔):
Let G be a cyclic group of order q=|G|
generated by 𝑔

KeyGen→(sk, pk):
sk ⟵${1,…, q-1}, pk=𝑔sk

Enc(pk, m ∈ G)→ c
r ⟵${1,…, q-1}
c ≔ (𝑔m ⋅ pkr, 𝑔r)

Dec(sk, c)→m
m ≔ log! (c[0] /c[1]sk)

c#= Enc(pk, m#) and c$= Enc(pk, m$)
Mul(c#, c$) = (c# 0 ⋅ c$ 0 , c# 1 ⋅ c$ 1)

= (𝑔m! ⋅ pkr! ⋅ 𝑔m" ⋅ pkr" , 𝑔r! ⋅ 𝑔r")
= (𝑔m!%m" ⋅ pkr!%r" , 𝑔r!%r")=c

Dec(sk, c) = m# +m$ Not efficient for
general case

Additive El Gamal Encryption
Properties

45

Security – Security from the Decisional Composite
Residuosity assumption:

Evaluation –
c$= Enc(pk, m$) and c)= Enc(pk, m))
Add(c$, c)) = c$ ⋅ c)

= 𝑔m& ⋅ r$# 𝑔m' ⋅ r)# = 𝑔m&*m' ⋅ (r$r))#
mod 𝑛)

Correctness – Uses two facts

1. ∀𝑥 ∈ ℤ #'
∗ , 𝑥# ɸ(#) = 1 mod 𝑛)

2. The base-𝑔 DL in ℤ #'
∗ is easy to

compute

Paillier(L):

KeyGen→(sk, pk):
p,q⟵ℙL
𝑛 ≔ pq
pk=(n,𝑔 = 𝑛 + 1), sk=ɸ(𝑛)

Enc(pk, m ∈ ℤ !)→ c
r ⟵ ℤ !

∗

c ≔ 𝑔m ⋅ r! mod 𝑛#

Dec(sk, c)→m= cskmod !, $%
!

sk$%mod 𝑛

Paillier
Properties

Exercise

46

Security – Security based on factoring hardness:
Given 𝑛 = pq s.t. p,q⟵ℙ, find p and q
Equivalent to finding ɸ(𝑛)

Correctness –
Dec(sk, Enc(pk, m)) = mee#!mod ɸ())mod 𝑛 = m

Evaluation –
c-= Enc(pk, m-) = m-

e mod 𝑛
c.= Enc(pk, m.) = m.

e mod 𝑛
Mul(c#, c$) = m#

e ⋅m$
e mod 𝑛 = (m# ⋅ m$)e mod 𝑛 = c

Dec(sk, c) = m# ⋅m$

Compact –

RSA(L):

KeyGen→(sk, pk):
p,q⟵ℙ s.t. log(pq)≥L
𝑛 ≔ pq, e ⟵ ℤ ɸ($)

∗

pk=(n,𝑒), sk=e'(mod ɸ(𝑛)

Enc(pk, m ∈ ℤ $
∗)→ c= me mod 𝑛

Dec(sk, c)→m=csk mod 𝑛

Textbook RSA Encryption
Properties

Exercise

Lattice-Based
Constructions

47

Consider the polynomial ring ℛ) = ℤ) 𝑋 /(𝑋* + 1)
i.e., degree 𝑁 − 1 polynomials with coefficients in ℤ+

48Fully Homomorphic Encryption
A simple scheme for intuition

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

Idea inspired from Christian Mouchet’s Course on Computing on Encrypted Data – HPI 2024

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Consider the polynomial ring ℛ) = ℤ) 𝑋 /(𝑋* + 1)
i.e., degree 𝑁 − 1 polynomials with coefficients in ℤ+

Correctness – ∀ sk ∈ ℛ) and ∀ m ∈ ℛ)

Dec(sk, Enc(sk, m)) = (−𝑎 ⋅ sk+m) +sk ⋅ 𝑎
Dec(sk, Enc(sk, m)) = −𝑎𝑠 +m +𝑠 ⋅ 𝑎 = m

49Fully Homomorphic Encryption
A simple scheme for intuition – Correctness

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Evaluation – ∀ sk ∈ ℛ) and ∀m(,m+ ∈ ℛ)

c(= Enc(sk, m() and c+= Enc(sk, m+)

50Fully Homomorphic Encryption
A simple scheme for intuition – Addition

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Evaluation – ∀ sk ∈ ℛ) and ∀m(,m+ ∈ ℛ)

c(= Enc(sk, m() and c+= Enc(sk, m+)

- Addition
c$ + c) = −𝑎$ ⋅ sk +m$, 𝑎$ + (−𝑎) ⋅ sk +m), 𝑎))
c$ + c) = (−𝑎$ ⋅ sk +m$ − 𝑎) ⋅ sk +m), 𝑎$ + 𝑎))
c$ = (−(𝑎$+𝑎)) ⋅ sk +m$ +m), 𝑎$ + 𝑎)

c$ + c) = −𝑏 ⋅ sk +m$ +m), 𝑏.// with 𝑏&'' = 𝑎% + 𝑎#
c$ + c) = Enc(sk, m$ +m))

So Add(c(, c+) = c(+ c+

51Fully Homomorphic Encryption
A simple scheme for intuition – Addition

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Evaluation – ∀ sk ∈ ℛ) and ∀m(,m+ ∈ ℛ)

c(= Enc(sk, m() and c+= Enc(sk, m+)

- Multiplication?
c$ ⋅ c) = −𝑎$ ⋅ sk +m$, 𝑎$ ⋅ (−𝑎) ⋅ sk +m), 𝑎))
c$+ = (−𝑎$ ⋅ sk +m$ ⋅ (−𝑎) ⋅ sk +m)), 𝑎$ ⋅ 𝑎))
c$ = sk)𝑎$𝑎) − sk 𝑎$m) +m$𝑎) +m$m), 𝑎$ ⋅ 𝑎))

Cross-terms that cannot be reconstructed at
decryption!

53Fully Homomorphic Encryption
A simple scheme for intuition – Multiplication

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Evaluation – ∀ sk ∈ ℛ) and ∀m(,m+ ∈ ℛ)

c(= Enc(sk, m() and c+= Enc(sk, m+)

- Multiplication?
c$ ⋅ c) = −𝑎$ ⋅ sk +m$, 𝑎$ ⋅ (−𝑎) ⋅ sk +m), 𝑎))
c$+ = (−𝑎$ ⋅ sk +m$ ⋅ (−𝑎) ⋅ sk +m)), 𝑎$ ⋅ 𝑎))
c$ = sk)𝑎$𝑎) − sk 𝑎$m) +m$𝑎) +m$m), 𝑎$ ⋅ 𝑎))

Cross-terms that cannot be reconstructed at
decryption!

54Fully Homomorphic Encryption
A simple scheme for intuition – Multiplication

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Evaluation – ∀ sk ∈ ℛ) and ∀m(,m+ ∈ ℛ)

c(= Enc(sk, m() and c+= Enc(sk, m+)

- Multiplication: Tensor product

c = c$×c) =
c$[0] ⋅ c)[0]

c$[0] ⋅ c)[1] + c$[1] ⋅ c)[0]
c$[1] ⋅ c)[1]

55Fully Homomorphic Encryption
A simple scheme for intuition – Multiplication

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

c = c$×c) =
c$[0] ⋅ c)[0]

c$[0] ⋅ c)[1] + c$[1] ⋅ c)[0]
c$[1] ⋅ c)[1]

sk)𝑐012 − sk𝑏012 +m$m)
−2 sk𝑐012 + 𝑏012

𝑐012
𝑐012 = 𝑎$ ⋅ 𝑎) 𝑏012 = 𝑎$m) +m$𝑎)

Evaluation – ∀ sk ∈ ℛ) and ∀m(,m+ ∈ ℛ)

c(= Enc(sk, m() and c+= Enc(sk, m+)

- Multiplication: Tensor product + Decryption

56Fully Homomorphic Encryption
A simple scheme for intuition – Multiplication

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

c$×c) =
c$[0] ⋅ c)[0]

c$[0] ⋅ c)[1] + c$[1] ⋅ c)[0]
c$[1] ⋅ c)[1]

sk)𝑐012 − sk𝑏012 +m$m)
−2 sk𝑐012 + 𝑏012

𝑐012

Define Dec’_2(sk, c) →m = c[0] +sk ⋅ c[1]+ sk) ⋅ c[2]
This extend to larger depth. Degree-2

ciphertext Relinearization: converts
to degree 1-ciphertext

Compactness – Need for relinearization

We have seen that homomorphic multiplication
increases the size of the ciphertexts.

Relinearization: converts a degree-2 ciphertext c into
a degree-1 ciphertext c’.
Requires: a relinearization key rlk = Enc(sk, sk))

57Fully Homomorphic Encryption
A simple scheme for intuition – Multiplication

IdealHE:

KeyGen→(sk,⋅):
sk ≔ 𝑠 ← $ ℛ)

Enc(sk, m ∈ ℛ))→ c
𝑎 ← $ ℛ)
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Dec(sk, c)→m
m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

FYI

c’ = Relin(rlk, c) =
c$[0] ⋅ c)[0]

c$[0] ⋅ c)[1] + c$[1] ⋅ c)[0]
c$[1] ⋅ c)[1]

c[0] +c[2] ⋅ rlk[0]

c[1] +c[2] ⋅ rlk[1]

Correctness –

Evaluation –

Compactness –

Public Key –

Security –

58Fully Homomorphic Encryption
A simple scheme for intuition – Summary

IdealHE:
KeyGen→(sk, rlk):

rlk = Enc(sk, sk$)
sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Relin(rlk, c) = c 0 , c 1 + c 2 ⋅ rlk

Dec(sk, c)→m = c[0] +sk ⋅ c[1]

Add(c#, c$) = c# + c$

Mul(c#, c$) = Relin(rlk, c#×c$)

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Correctness – Yes

Evaluation – Additions and Multiplications

Compactness – with relinearization

Public Key – Yes, pk = Enc(sk,0) and u ⋅ pk to Enc for u ← ℛ(

Security –

59Fully Homomorphic Encryption
A simple scheme for intuition – Summary

IdealHE:
KeyGen→(sk, rlk):

rlk = Enc(sk, sk$)
sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Relin(rlk, c) = c 0 , c 1 + c 2 ⋅ rlk

Dec(sk, c)→m = c[0] +sk ⋅ c[1]

Add(c#, c$) = c# + c$

Mul(c#, c$) = Relin(rlk, c#×c$)

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Correctness – Yes

Evaluation – Additions and Multiplications

Compactness – with relinearization

Public Key – Yes, pk = Enc(sk,0) and u ⋅ pk to Enc for u ← ℛ(

Security – No! The problem is not hard. We need the
error!

60Fully Homomorphic Encryption
A simple scheme for intuition – Summary

IdealHE:
KeyGen→(sk, rlk):

rlk = Enc(sk, sk$)
sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+
c ≔ (−𝑎 ⋅ sk+m, 𝑎)

Relin(rlk, c) = c 0 , c 1 + c 2 ⋅ rlk

Dec(sk, c)→m = c[0] +sk ⋅ c[1]

Add(c#, c$) = c# + c$

Mul(c#, c$) = Relin(rlk, c#×c$)

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

Rn Lattices
Definition (Rn

Lattice)

An n-dimensional lattice L is a subset of Rn that is:
1. an additive subgroup; and
2. discrete.

↭ Subgroup: ω0 → L, and ↑ωx , ωy → L, ωx + ωy → L
↭ Discrete: every ωx → L has a neighborhood in

Rn for which it is the only point in L.
↭ Basis: A lattice can be represented as a set of

lin. indep. Rn vectors B = {ωb1, ..., ωbn} s.t.:

L =

{
n∑

i=1

ziωbi | zi → Z
}
.

ωb1

ωb2

v1.0 92/178

61Lattice-Based Homomorphic Encryption
Background on lattices

A lattice is a mathematical object: a subset of ℝ) that is an additive subgroup and discrete
There exits many problems deemed hard related to lattices
e.g., Shortest Vector Problem: find non-zero vector of low norm

Rn Lattices
Definition (Rn

Lattice)

An n-dimensional lattice L is a subset of Rn that is:
1. an additive subgroup; and
2. discrete.

↭ Subgroup: ω0 → L, and ↑ωx , ωy → L, ωx + ωy → L
↭ Discrete: every ωx → L has a neighborhood in

Rn for which it is the only point in L.
↭ Basis: A lattice can be represented as a set of

lin. indep. Rn vectors B = {ωb1, ..., ωbn} s.t.:

L =

{
n∑

i=1

ziωbi | zi → Z
}
.

ωb1

ωb2

v1.0 92/178
Figure copied from Christian Mouchet’s Course on
Computing on Encrypted Data – HPI 2024

- Large mathematical objects

- Several lattice-based hard problems

- Assumed quantum resistant for
appropriate parametrization

FYI

Define ℛ) = ℤ) 𝑋 /(𝑋* + 1) Degree 𝑁 − 1 polynomials with coefficients in ℤ3

Given a secret vector s ∈ ℛ), the RLWEℛ),-
. distribution outputs:

𝑎 𝑏 = 𝑎, 𝑎𝑠 + 𝑒 ∈ ℛ)
+

where 𝑎⃗ ← ℛ) and e ← 𝜒 𝑚=poly(𝑛), appropriate 𝑞, and 𝜒 of error rate 𝛼 < 1

Cannot distinguish between RLWEℛ),-
. and a uniform distribution

62Ring learning with error
Intuition

Idea: add noise everywhere!
𝑎, 𝑏 = 𝑎, 𝑎𝑠 + 𝑒 ∈ ℛ)

+ with 𝑎⃗ ← ℛ) and e ← 𝜒

Informal: RLWE assumption says this is
indistinguishable from 𝑎, 𝑏 ← $	 ℛ) .

63Ring learning with error-based FHE scheme
Issue with correctness

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+
c ≔ (−𝑎 ⋅ sk+m , 𝑎)

Dec(sk, c)→m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Idea: add noise everywhere!
𝑎, 𝑏 = 𝑎, 𝑎𝑠 + 𝑒 ∈ ℛ)

+ with 𝑎⃗ ← ℛ) and e ← 𝜒

Correctness – ∀ sk ∈ ℛ+ and ∀ m ∈ ℛ+

Dec(sk, Enc(sk, m)) = (−𝑎 ⋅ sk+ e-). +m) +sk ⋅ 𝑎
Dec(sk, Enc(sk, m)) = −𝑎𝑠 + e-). +m +𝑠 ⋅ 𝑎
Dec(sk, Enc(sk, m)) = e-). +m ≠ m

We need to perform error correction:
1. Message scaling
2. Noise scaling

64Ring learning with error-based FHE scheme
Issue with correctness

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). +m , 𝑎)

Dec(sk, c)→m = c[0] +sk ⋅ c[1]

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Let Δ ∈ ℤ) be a positive factor less than 𝑞.
If Δ > 2𝑒 and Δm < 𝑞 , then the division and
rounding remove the error.
We now have correctness again!

65Ring learning with error-based FHE scheme
Adding error correction – message scaling

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Let us look at the impact of the scale Δ

Consider the following representation of the
polynomial coefficients

66Ring learning with error-based FHE scheme
Adding error correction – message scaling

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

0𝑞

Third coefficient
representation

MSB LSB

Δ

𝑁

c 0 ∈ ℛ+

𝑞 0

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

67Ring learning with error-based FHE scheme
Adding error correction – message scaling

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

𝑁

0𝑞

m

MSB LSB

𝑒-).

Δ

M

Let us look at the impact of the scale

We display the scaled message m and the
encryption noise e6#7

c 0 ∈ ℛ+

Third coefficient
representation

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

68Ring learning with error-based FHE scheme
Adding error correction – message scaling

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)

𝑁

0𝑞

m

MSB LSB

𝑒

Δ

M

−𝑎 ⋅ sk

Let us look at the impact of the scale

We now add the masking

c 0 ∈ ℛ+

Third coefficient
representation

c =

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

𝑎- ⋅ sk

𝑎. ⋅ sk

69Ring learning with error-based FHE scheme
Adding error correction – message scaling and Ops

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ+)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)
0𝑞

m% 𝑒%

Δ

m# 𝑒#

c#=

c$=

Δ

(𝑎-+𝑎.) ⋅ sk m& +m' 𝑒/00c#+ c$=

The noise growth is linear in the #add in the worst case.

m& ⋅m' 𝑒123c#× c$=

The noise growth is quadratically in the #mult in the worst case.
Output message scaled by Δ$

ΔΔ$

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

70Ring learning with error-based FHE scheme
Adding error correction – message scaling and Ops

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)
0𝑞 Δ

m& ⋅m'c#× c$=

ΔΔ$

What can we do? – Noise management

𝑒123

FHE:
KeyGen→(sk, ⋅): 𝑎, 𝑏 ← ℛ+

sk ≔ 𝑠 ← $ ℛ+

Enc(sk, m ∈ ℛ4)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒
c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Dec(sk, c)→ m
M ∶= c[0] +sk ⋅ c[1]
m ∶= ⌊M/Δ⌉

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

71Ring learning with error-based FHE scheme
Adding error correction – message scaling and Ops

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)
0𝑞 Δ

m& ⋅m'c#× c$=

ΔΔ$

What can we do? – Noise management
1. Select 𝜟 wisely:

Encrypt messages in ℛ<, 𝑡 ≪ 𝑞. Set Δ = ⌊3
<
⌉

2. Rescale from Δ+ needed (multiply by 4
+

in ℛ)

3. Perform noise refresh: Bootstrapping

𝑒123

0𝑞

m

MSB LSB

𝑒-).

Δ

72Ring learning with error-based FHE scheme
Summary

FHE:
KeyGen→(sk, pk, rlk):

sk ≔ 𝑠 ← $ ℛ+
rlk = GenRLK(sk) rlk = GenPK(sk)

Enc(sk, m ∈ ℛ4)→ c
𝑎 ← $ ℛ+ e-). ← 𝜒, Δ = ⌊+

4
⌉

c ≔ (−𝑎 ⋅ sk+ e-). + Δm , 𝑎)

Relin(rlk, c) →c’

Dec(sk, c)→m

Add(c#, c$) = c# + c$

Mul(c#, c$) = Relin(rlk,ℛ(c#×c$)/Δ)

ℛ+ = ℤ+ 𝑋 /(𝑋, +1)Correctness – Yes
Evaluation – Additions and Multiplications
Compactness – with relinearization
Security – RLWE assumption

Note:
- Modulus 𝑞 is large: decompose it in smaller

primes (Chinese remainder Theorem)
- Plaintext space is ℛ1: batch 𝑁 values in ℤ1
- By selecting appropriate parameters, enable

fast multiplication and SIMD SIMD: single input multiple data

Amortize operations!
Pack as much as possible

73FHE in Practice
Challenges

1. Selecting cryptographic parameters
Interdependencies between 𝑁, 𝑞, 𝑡, and 𝜒
Relies on estimators to assess the hardness

2. Circuit definition
How to represent functions into circuits
Minimize the multiplicative depth
Optimize the costly operations (bootstrap, rescale, etc.)

3. Bearing with the costs
FHE induces both computation and communication overhead
Not all plaintexts space can be easily handled

+e
+e2

+e3

(((m1 ⋅m2) ⋅m3) ⋅ m4)

Naïve operation

+e
+e2

((m1 ⋅m2) ⋅(m3 ⋅ m4))
+e

Optimization

!

https://github.com/malb/lattice-estimator

FHE in Practice
Parameterization

74

§ Dimension N: between 211 and 216 polynomial size (keys, ciphertexts)

§ Ciphertext space: ℛ) with q 100s of bits coefficient size of ciphertexts

§ Message space: 𝑡 application dependent can be a small as 20 bits

Example: compute Squared Distance between two 2D
§ log 𝑁 = 13, log 𝑞 = 218, log 𝑡 = 16
§ One ciphertext: 450kB
§ Setup: 7.4 ms
§ Encode + Enc 1 vector: 2.7 ms
§ Eval: 7 ms
§ Dec + Decode: 2 ms

But costs can quickly go up!
For example for log N = 15
and depth 16, you might
need >100ms for one
multiplication

75FHE in Practice
Extension to malicious models

Malicious threat model?
So far, the evaluator can only evaluate the function on the input it receives.
In reality, evaluator could be:

• Honest but Curious: Parties will follow the HE protocol honestly, but try to learn as
much as possible from the messages they receive

• Malicious: Parties can arbitrarily deviate from the HE protocol to learn as much as
possible

⥤ Requires heavy machinery e.g., Zero-Knowledge Proofs

Encrypt Decrypt

Homomorphic Encryption
Other resources

76

A. Viand et al. "SoK: Fully homomorphic
encryption compilers." 2021 IEEE SP

C. Marcolla et al. "Survey on fully
homomorphic encryption, theory, and

applications." Proc. of the IEEE 2022

Homomorphic Encryption
Conclusion

77

Enables computation over
encryption

Has become increasingly
practical

Modern lattice-based
schemes plausibly quantum
resistant

Encrypt Decrypt

m c

c f(m)
f(m)

Eval(pk, f, c)f

Dec(sk, ⋅

Enc(pk,⋅)HE scheme:
KeyGen(1k)→(sk, pk)
Enc(pk, m; r)→ c
Dec(sk, c)→m
Eval(pk, f, c1,…,cn)→cf()

!
Circuit
design

Plaintext
encoding

Parameters
selection Amortization

Noise
management

Challenges:

§ [HElib] https://github.com/shaih/HElib Halevi and Shoup
§ [SEAL] https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-

library/ SEAL
§ [NFLlib] https://github.com/quarkslab/NFLlib French consortium
§ [HEAAN] https://github.com/kimandrik/HEAAN Korean researchers
§ [TFHE] https://tfhe.github.io/tfhe/ inpher + French researchers
§ [PALISADE] https://git.njit.edu/palisade/PALISADE New Jersey Institute of Technology
§ [cuHE] https://github.com/vernamlab/cuHE
§ [Lattigo] https://github.com/tuneinsight/lattigo
§ [OpenFHE] https://openfhe.org/
§ [THFE-rs] https://docs.zama.ai/tfhe-rs

78References
Software Libraries

https://github.com/shaih/HElib
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://github.com/quarkslab/NFLlib
https://github.com/kimandrik/HEAAN
https://tfhe.github.io/tfhe/
https://git.njit.edu/palisade/PALISADE
https://github.com/vernamlab/cuHE
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo

