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Introduction |
Homomorphic encryption

Lecture aim: study the cryptographic technique and related
toolbox for privacy engineering

Application Layer

tool cryptographic
for building PETS primitive



Goals
What should you learn today?

= Basic understanding of homomorphic encryption
= Understand when to use homomorphic encryption

= Understand key properties:
« Communication and computation cost
« Trust assumptions
« Guarantees with respect to inputs

= Understand practical issues when using homomorphic encryption
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Encryption aims at data confidentiality
In transit
In storage
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Introduction
Encryption

Encryption aims at data confidentiality
In transit
In storage
Homomorphic Encryption aims at also confidentiality in computation

: : Govt Data: e.g.,
Health D.ata Financial Eraud demographics,
Analysis Prevention
vote, etc.




Overview

Homomorphic encryption

= A cryptographic primitive that enables
the computation of functions in the
encrypted domain

Input: Enc(x

| R
AnceK Q )

Server

Output: Enc(F(x))
Untrusted party

privacy-wise
(typically a cloud)



Overview

Homomorphic encryption

= A cryptographic primitive that enables
the computation of functions in the
encrypted domain

Input: Enc(x

= Security property: the computing
\ party cannot learn any information
(ﬁ) about the input or output
Alice ca ) = Correctness: output is correct
K Server = Threat Model: usually Honest-but-
Output: Enc(F(x)) Curious

Untrusted party
privacy-wise
(typically a cloud)
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Homomorphic Encryption System Model

Homomorphic encryption: classically, has one computing party, and
« one party providing the input and reading the result, or

Server
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Overview |
Homomorphic Encryption System Model

Homomorphic encryption: classically, has one computing party, and
« one party providing the input and reading the result, or
* n parties providing the input and another reading the result, or
« n parties providing data and learning the result (not in this class)

Server

Server




What about Alternatives?

NDAs, SMC, TEE

5]

/Non-DiscIosure\

Agreements

i
X |

Low tech

Lengthy Process

Limited protection

\ /

2
Pyt

N1

@ecret Sharing}
SMC

Non-collusion assumption

If they do, they can
join their shares and
recover all the secrets!

Hard to find in practice

o /

/ Trusted

/ AdOWIW

Execution Env.

Trust in manufacturer

Can be vulnerable to
physical attacks

N

/




Homomorphic Encryption “
Objectives Consolidated

QQ Enable computation on encrypted data
- Computation performed before decryption
- Decryption key known only to the receiver

&: Outsourced computation setting: party with data provides an

encrypted version of the data to a single untrusted computation
party (a server). No need for a non-collusion assumption.

Rely on solely on the security of the cryptographic primitives

\
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Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

|
1985, El Gamal

|
1999, Paillier

RSA 1977: modular multiplication
Goldwasser-Micali: XOR

El Gamal: modular multiplication
Paillier: modular addition

v
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Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

|
1985, El Gamal

|
1999, Paillier

2009, Gentry

»
>
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Homomorphic Encryption
HIStory

Privacy Homomorphism

»

1978 Rivest et al. 1982, Goldwasser-Micali 2009, Gentry

1985, El Gamlal 2011-Present , RLWE Constructions

1999, Paillier

- Lattice-based schemes (e.g., BGV, BFV, CGGI, CKKS)
- Many libraries (e.g., Helib, SEAL, HEAAN, PALISADE, OpenFHE, Lattigo, TFHE-rs.
- Standardization 2017-soon
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https://homomorphicencryption.org/

Homomorphic Encryption
Applications

S Swift

ZANA
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Announcing Swift
Homomorphic Encryption

JULY 30, 2024

Zama's fhEVM Coprocessor is now available

Zama's fhEVM

o (& ] e TUNE INSIGHT Privacy-Preserving Federated Learning A simple and powerful solution for building

decentralized apps with full privacy and
We're excited to announce a new open source Swift package for

homomorphic encryption in Swift: confidentiality on Ethererum leveraging Fully

Homomorphic encryption (HE) is a cryptographic technique that Secu re Fed erated Lea I'n I ng WIt h Homomorphlc Encryption (FHE)-
enables computation on encrypted data without revealing the .

underlying unencrypted data to the operating process. It provides TU ne I nS I g ht encrypted

a means for clients to send encrypted data to a server, which .

operates on that encrypted data and returns a result that the com pUt I ng p I atform © See the code
client can decrypt. During the execution of the request, the server

itself never decrypts the original data or even has access to the “ Tune |nsight

decryption key. Such an approach presents new opportunities for . 2,528 followers @ fieadiielcocs

cloud services to operate while protecting the privacy and security
of a user’s data, which is obviously highly attractive for many November 21, 2023

. Ready to use FHE for your business? Talk to our team.
scenarlos.

Apple Live Caller ID - 10518 Tune Insight Federated Zama confidentiality for
Learning Etherium



Example application
Privacy-preserving statistics on medical data

Hosp|tals

(4]

Stat|st|c:|an

"’ Eﬂ(\

= Goal: a statistician wants to compute statistics on joint data from several hospitals
= Privacy concern: single data entries are privacy-sensitive patients’ data
= Using a cloud server and FHE

Hospitals store encrypted patients’ data on the cloud o
Cloud compute statistics on joint (encrypted) datasets. Statistician decrypts results

18



Definitions and

Properties




Formal definition
Cryptographic Notation

21

Alice
& xBOb

Key: sk Key: sk
Inputm  _ e sk ) Output:m = Dec(sk,c)
&

Symmetric encryption:
parties share the same secret key sk

‘ Bob

Output: m = Dec(sk,c)
Key: sk

>

Public key encryption (PKE): parties have a

secret key sk (sometimes: decryption key) and a
public key pk (sometimes: encryption key)

I Alice

Input: m

Key: pk ¢ = Enc(pk, m)

KeyGen(1¥)—(sk, pR)
Enc(pk, m; n—c
Dec(sk, ¢)—m

Generates a private/public key pair for a security parameter k
Encrypt the message m with randomness r to a ciphertext c
Decrypt a ciphertext m to obtain the message m




Formal definition |
Homomorphic encryption

A homomorphic encryption scheme is given by the following four algorithms:

KeyGen(1¢)->(sk, pR) Generates a private/public Rey pair for a security parameter k
Enc(pk, m; r)=>c Encrypt the message m with randomness r to a ciphertext ¢
Dec(sk, ¢)->m Decrypt a ciphertext ¢ to obtain the message m

Eval(pk, f, ¢;,...,€p)>C’

Evaluate function f on the encrypted input c; to obtain
a new ciphertext ¢’

Eval() is what makes HE different from standard PK encryption

22



Properties |
Homomorphic encryption

Correctness
- =4
Security -— M -—
Evaluation correctness & Encrypt “ Decrypt 1
Alice Bob

Composition

Compactness



Homomorphic Encryption
Encryption Correctness

Correctness — intuition:

Enc(pk,-)

Dec(sk, )




Homomorphic Encryption
Encryption Correctness

Correctness - intuition: applying the deterministic decryption

function to the randomized encryption always returns the initial

plaintext.

Correctness. | a_

V re Rand, v m € P and (sk, pk)<KeyGen(1¥):
Dec(sk, Enc(pk, m; r)) =m

Enc(pk,-)

Dec(sk, )




Homomorphic Encryption
Homomorphic Correctness

Objective: Evaluate the plaintext function f over the encryption in the

ciphertext space

Recall an HE scheme:
KeyGen(1¥)—(sR, pR)
Enc(pk, m; n— ¢
Dec(sk, ¢)—m
Eval(pk, f, C)—>Cf()

- » C

Enc(pk,-)

Eval(pR,f, c)

f(m)+—

Dec(sR, -)

- €f(m)




Homomorphic Encryption
Wait... Homomorphic?

Homomorphism: mapping between two sets that preserves their
algebraic structure

Group homomorphism
Given two groups (G, +), (H, X)

h: G >H is a group-homomorphism if vx, y € G:

h(x+y)=h(x) X h(y)

For an additive HE scheme, Dec(sk, -): € = Pis an homomorphism between
(¢, Eval.Add) and (P, +)

27
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Homomorphic Encryption
Homomorphic Correctness

Objective: Evaluate the plaintext function f over the encryption in the
ciphertext space

For a set F of admissible functions

vme?P, vfe F, and m —Enc(lpk ) > C

k, pk) < KeyGen(1¥): |
(sk, pk)<KeyGen(1¥) f i Eval(pk,f, €)
Dec(sk, Eval(pk, f, Enc(pk, m))) = f(m) f(m)«—Dec(sk, J—¢ f(m)

This definition is
relaxed in practice




Homomorphic Encryption
Security

Security - intuition:




Homomorphic Encryption "
Security

Security - intuition: The adversary learns nothing from the
ciphertexts and public keys

How do we capture this?

Game-based security definition: method to capture a security definition
using a game between an adversary and a challenger. If the adversary

has a non-negligible advantage to win the game, the adversary “breaks”
the security property.



Semantic security (IND-CPA) of
Homomorphic encryption

Game-based security: is a method to capture a security definition using a game between an adversary
and a challenger. If the adversary wins the game, the adversary “breaks” the security property.

sk, pk& pR > (ﬁ‘ pR (Sk, pR)<KeyGen(1k)
[

(my, m,)¢ A(pR) // adversary chooses two messages

Alice ) mo, mi
b—{0,1} ) b<{0,1}; // random bit is chosen
) Enc(pR, m) . c<Enc(pk, mb) // message b is encrypted
A ) b’ b'¢ Al(c) // adversary must figure out b
|L|f b’=b adversary wins :l Semantic security - intuition

seeing encryption of messages

does not give the adversary

Semantic security. HE is secure if 2-Pr[b’ = b] = negl(k) |
guessing the encrypted message

better than random guess




Homomorphic Encryption
s this an HE scheme?

Consider the following scheme built on top of a IND-CPA secure PKE scheme:

1.
2.
3.

KeyGen(1¥) = PKE.KeyGen(1¥)

Enc(pk, m) = {cpkg = PKE.Enc(pk, m); return c=(cpkg. nil)}
Eval(pr, f, ¢) = {cpkg = ¢l[0]; return (cpkg, )}

Dec(sk, ¢) = {cpkE, f < ¢; return f(PKE. Dec(sk, cpkg))}

Is it correct Encryption scheme?
Is it IND-CPA secure?
Is it useful?

32



Homomorphic Encryption
s this an HE scheme?

Consider the following scheme built on top of a IND-CPA secure PKE scheme:

1.
2.
3.

KeyGen(1¥) = PKE.KeyGen(1¥)
Enc(pk, m) = {cpkg = PKE.Enc(pk, m); return c=(cpkg. nil)}
Eval(pr, f, ¢) = {cpkg = ¢l[0]; return (cpkg, )}

Dec(sRk, ¢) = {epkE. f < c; return f(PKE. Dec(sk, cpkg))}

Is it correct Encryption scheme? Yes, straightforward from the decryption
Is it IND-CPA secure? Yes, as it would break the IND-CPA from PKE
Is it useful? No, the evaluation of f is performed at decryption...

33
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Homomorphic Encryption
Compactness

Compactness - intuition: the ciphertext size should not be growing
through homomorphic operations

Compactness. HE compactly evaluates a family of functions F if
V(sk, pR)¢<KeyGen(1¥), vfeF, vmeP:
There exists a polynomial p() such that the size of

|Eval(pk,f,c,,...,c,) < p(k), with k the security parameter, independent of f();

i.e., the complexity of Dec is independent of f().

This definition is
relaxed in practice
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Homomorphic Encryption
Composition

Composition - intuition: Build HE computation from a set of
simple operation (think Circuits and CPU)

Define Eval as circuit of simple “gates”. E.g., Boolean Algebra

X0 X1 AND(Xo,Xl)
010 0 X
0 —]
01 0 X0 — AND
110 0 xi —|AND)— X T
1|1 1 Eval. AND
xo | x1 | OR(x0,x1) )8) );1 OR(AND(goaxl)axl)
010 0 0 . X
0] 1 1 X0
1[0 1 x| Y 1|0 0
11 1 Eval.OR 1)1 1

Figure copied from Christian Mouchet’s Course on Computing on Encrypted Data — HPI 2024
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Homomorphic Encryption
Composition

Composition - intuition: Build HE computation from a set of
simple operation (think Circuits and CPU)

vfe F,f: P > P, v (m,,..., m,) € P", (sk, pk)«KeyGen(1), and Vi €[n] ¢; = Enc(pk, m;)

- Correctness for n-ary functions:
Dec(sk, Eval(pk, f, cs,...,€,) = f(m4, ..., my,)
- Composability:
Dec(sk, Eval(pR, f, ¢4,...,c,) = f(Dec(sk, ¢y), ..., Dec(sk, c,))

Informally extends correctness to any valid ciphertext (fresh or Eval)



Homomorphic Encryption
summary of the properties

vfe F,f: PN - P, v (m,,.., m,) € P,
(sk, pk)¢<KeyGen(1k), and Vi €[n] ¢; = Enc(pk, m))

Correctness
Dec(sk, Enc(pk, m;)) = f(m,)
IND-CPA Security
Adv {174 = negl(k)
Evaluation correctness and composition
Dec(sk, Eval(pk, f, c;,...,c,) = f(m,, ..., m,)
Dec(sk, Eval(pk, f, c,,...,c,) = f(Dec(sk, ¢cy), ..., Dec(sk, c,))
Compactness
|Eval(pk,f,c,,...,c,) < p(k) for p polynomial Independent of f

37

HE scheme:

KeyGen(1¥)—(sR, pR)
Enc(pk, m; n— ¢

Dec(sR,

Eval(pk, f, €1,....en)—=c¢f)

c)—m

M «<—— Enc/Dec —— ¢
f Eval(pk £, c)
f(m)«— Dec/Enc

€ fm)



Constructions




Homomorphic Encryption
HIStory

Privacy Homomorphism

1978 Rivest et al. 1982, Goldwasser-Micali

|
1985, El Gamal

|
1999, Paillier

We will cover

-—RSA

- El Gamal
m

- RLWE

|| :
2009, Gentry

2011-Present, RLWE Constructions
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El Gamal Encryption
Properties

ElGamal(G, g):

Let G be a cyclic group of order g=|G|
generated by g

KeyGen—(sR, pR):
sk «—${1,..., g-1}, pk=gSR
Enc(pk, me G)— ¢
r—%${1,..., g-1}
c:= (m-pk',g"

Dec(sk, ¢)—m

m = c[0] /e[1]°F

Security - Security from the Discrete Logarithm:
Given g and y = g* mod p, find x

Correctness —

Evaluation - Component-wise

Compact -

40



El Gamal Encryption "
Properties

Security - Security from the Discrete Logarithm:

ElGamal(G, g): Given g and y = g* mod p, find x

Let G be a cyclic group of order g=|G|
generated by g

Correctness - Follows by definition
KeyGen—(sR, pR): Dec(sk, Enc(pk, m)) = Dec(sk, (m - pk", g"))

sk —${1,..., g-1}, pk=gSR =m-pk"- (g Sk =m- g"Sk. (g)=sk = m
Evaluation - Component-wise

Enc(pk, me G)— ¢
r—%${1,..., g-1}
c:=(m-pk', g"

Dec(sk, ¢)—m

Compact -
m = ¢[0] /e[1]5R ’




El Gamal Encryption )
Properties

Security - Security from the Discrete Logarithm:

ElGamal(G, g): Given g and y = g* mod p, find x

Let G be a cyclic group of order g=|G|
generated by g

Correctness - Follows by definition

KeyGen—(sk, pR): Dec(sk, Enc(pk, m)) = Dec(sk, (m - pk', g")
sk —${1,..., q-1}, pk=gSk =m-pkF - (gNSR=m.g"R.(g") Sk =m
Evaluation - Component-wise multiplication
Enc(pk, me G)— ¢ ¢,= Enc(pk, m;) and ¢,= Enc(pk, m,)
r—%${1,..., g-1} Mul(cy, €;) = (€,[0] - €2[0], €4 [1] - €;[1])

= (ml . pkrl -m, - pkrz’grl . grz)
=(my;-m, - pkr1+r2'gr1+rz)=c
DeC(Sk, C) = ml : m2

c:=(m-pk',g")

Dec(sk, ¢)—m

Compact -
m = ¢[0] /e[1]5R ’




El Gamal Encryption ’
Properties

Security - Security from the Discrete Logarithm:

ElGamal(G, g): Given g and y = g* mod p, find x

Let G be a cyclic group of order g=|G|
generated by g

Correctness - Follows by definition

KeyGen—(sk, pR): Dec(sk, Enc(pk, m)) = Dec(sk, (m - pk', g")
sk —${1,..., q-1}, pk=gSk =m-pkF - (gNSR=m.g"R.(g") Sk =m
Evaluation - Component-wise multiplication
Enc(pk, me G)— ¢ ¢,= Enc(pk, m;) and ¢,= Enc(pk, m,)
r—%${1,..., g-1} Mul(cy, €;) = (€,[0] - €2[0], €4 [1] - €;[1])

= (ml . pkrl -m, - pkrz’grl . grz)
=(my;-m, - pkr1+r2'gr1+rz)=c
DeC(Sk, C) = ml : m2

c:=(m-pk',g")

Dec(sk, ¢)—m

m = ¢[0] /e[1] Sk Compact - yes




Additive El Gamal Encryption )

Properties

AddEIGamal(G, g):

Let G be a cyclic group of order gq=|G|
generated by g

KeyGen—(sk, pR):
sk —${1,..., g-1}, pk=gSR

Enc(pk, me G)— ¢
r —%${1,..., g-1}
c:= (g™ pk',g"

Dec(sk, ¢)—m
m = log, (c[0] /c[115R)

Useful plaintext space:

(Z ,,, +) closed additive group of integers modulo n.

Supports any linear combination:
f(x1, e Xp) = ey 8 - x; mod n
We encode the plaintext in the exponent m — g

¢,;= Enc(pk, m;) and ¢,= Enc(pk, m,)
Mul(cy, ¢;) = (¢,[0] - ¢;[0], ¢1[1] - €;[1])

= (gm1 . pkr1 . gmz .pkrz’grl .grz)
= (gm1+m2 ,pkr1+r2’gr1+r2)=c

Dec(sk, ¢)=my; + m, -
Not efficient for
general case




Paillier
Properties

Paillier(L):

KeyGen—(sR, pR):
p.q—PL

n = pq
pk=(n,g = n + 1), sk=¢p(n)

Enc(pk, meZ,)— c
r—=7y

¢ == gM.r"* mod n?

R _
Dec(sk, ¢)—>m= (cs m?ld n2)-1

sk~ Imod n

Security — Security from the Decisional Composite
Residuosity assumption:

Evaluation -

Correctness - Uses two facts
1.VX €EZ 2, (x")q)(n) =1 mod n?

2. The base-g DLin Z ;; is easy to
compute



Textbook RSA Encryption

Properties
_ Security - Security based on factoring hardness:
RSA(L): Given n = pg s.t. p,q—P, find p and g
KeyGen—(sk, pk): Equivalent to finding ¢(n)

p,q<—P s.t. log(pq)=L
n=pa e =Ly,
pk=(n,e), sk=e~1 mod ¢(n)

Correctness —

Evaluation -

Enc(pk, m € Z %)— ¢=m® mod n
Dec(sk, ¢)—m=ck mod n

Compact -




Lattice-Based

Constructions




Fully Homomorphic Encryption

48

A simple scheme for intuition

R, = Z,[X]/(XN +1
IdealHE: 0 = Tl )

KeyGen—(sR,-):
SR =5 «$R,

Enc(sk, me R,;)— ¢
a<S$R,
c:=(—a-skR+m, a)

Dec(sk, ¢)—m
m = c[0] +sk - c[1]

Consider the polynomial ring R, = Z,[X]/(X" + 1)

l.e.,, degree N — 1 polynomials with coefficients in Z,

Idea inspired from Christian Mouchet’s Course on Computing on Encrypted Data — HPI 2024



Fully Homomorphic Encryption
A simple scheme for intuition — Correctness

R = LW/ 1D 1 Consider the polynomial ring R, = Z,[X]/(XN + 1)

l.e.,, degree N — 1 polynomials with coefficients in Z,

IdealHE:

_>(Skr°):
Sk =s < 3Ry Correctness -V ske R, and vV me R,
Dec(sk, Enc(sk, m)) = (—a - sk + m) +sk - a

Sk, me R c
( )™ =(—as+m)+s-a=m

a<3$R,
c:=(—a-sSkR+m, a)

(SR, ¢)—m
m = c[0] +sk - c[1]




Fully Homomorphic Encryption
A simple scheme for intuition — Addition

Rq = LX)/ + 1)1 Evaluation - V sk € R, and Vv my,m, € R,

IdealHE:
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
_>(Skr°):

Sk i=s <—$S’2q

(SR, meR,)— ¢
a<3$R,
c:=(—a-sSkR+m, a)

(SR, ¢)—m
m = c[0] +sk - c[1]
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Fully Homomorphic Encryption
A simple scheme for intuition — Addition

IdealHE: Rq = LX)/ + 1)1 Evaluation - V sk € R, and Vv my,m, € R,
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
—(sR,"):
sk =5 < 3R, - Addition
¢, +¢,=(—a; sk +my,ay) + (—a, - Sk + m,,a,)

(sk, meR,)— ¢ =(—a, SR +my —a, sk + m,,a, + a,)
a < $Rq = (—(a;+ay)-skR +my+m,,a; + a,
c:=(—a-sk+m, a) = (=b - SR + My + My, bygy) With bygy = a; + ay

(sk, €)—m ¢, + ¢, = Enc(sk, m; + m,)

m = c[0] +sk - c[1] So Add(¢,, ¢c,)=c¢; + ¢,
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Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

dealHE- Rq = LX)/ + 1) 1 Evaluation - V sk € R, and ¥ my, m, € R,
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
_)( r'):
=5 <R, - Multiplication?
€€ =(—ay SR +my,aq) - (—ay-sk +my,,ay)
(SR, me R,)— ¢ = ((—a;-sk +my)-(—a,-sk + m,),a, - a,)
a<3$R, = sk?a,a, — sk(aym, + mya,) + mym,,a, - a,)
C = (—Cl : + m, (1)
(sk, €)—m Cross-terms that cannot be reconstructed at
m = c[0] +sk - ¢[1] decryption!




54

Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

dealHE- Rq = LX)/ + 1) 1 Evaluation - V sk € R, and ¥ my, m, € R,
c¢,= Enc(sk, m;) and ¢,= Enc(sk, m,)
_)( r'):
=5 <R, - Multiplication?
€€ =(—ay SR +my,aq) - (—ay-sk +my,,ay)
(SR, me R,)— ¢ = ((—a;-sk +my)-(—a,-sk + m,),a, - a,)
a<3$R, = sk?a,a, — sk(aym, + mya,) + mym,,a, - a,)
C = (—Cl : + m, (1)
(sk, €)—m Cross-terms that cannot be reconstructed at
m = c[0] +sk - ¢[1] decryption!
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Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

Ry = Zg[X]/ (XN + 1) fon —
ldealHE: q= Lq Evaluation -V ske R, andvVm,;,m, € R,
¢,= Enc(sk, m,) and ¢,= Enc(sk, m,)
_)( r'):

=5 < $R, - Multiplication: Tensor product

(SR, meR;)— ¢c ¢;[0] - ¢z[0]
a<$R, c =cyxc, =| €1l0] - €2[1] + €1[1] - €;[0]

c:=(—a-sk+m, a) C1[1] - ¢z[1]

( ) c)_>m Sl?zcmul _Skbmul + mim,
m = ¢[0] +sk - ¢[1] C =C€1XCy = —2 SRCmur + b
Cmul

Cmul = a1 Ay b = aym, + mia,
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Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

Evaluation - v sk € R, and vmy, m, € R,
¢, = Enc(sk, m;) and ¢,= Enc(sk, m,)

- Multiplication: Tensor product + Decryption
Sk’zcmul - Skbmul + myms,
C1XCy = —2 SRcpur + b
Crmul

Define Dec’_2(sk, ¢) >m = ¢[0] +sk - c[1]+ sk? - ¢[2]

This extend to larger depth.
: .. iphertext
O Relinearization: converts Chhe

= to degree 1-ciphertext




Fully Homomorphic Encryption -
A simple scheme for intuition — Multiplication

Compactness - Need for relinearization

We have seen that homomorphic multiplication
increases the size of the ciphertexts.

Relinearization: converts a degree-2 ciphertext c into
a degree-1 ciphertext c’.

Requires: a relinearization Rey rlk = Enc(sk, sk?)




Fully Homomorphic Encryption
A simple scheme for intuition — Summary

R, = Z,[X]/(XN +1
IdealHE: o7 BETED
KeyGen—(sR, rlR):
rlk = Enc(sk, sk?)
Sk =s «$R,

Enc(sk, me R;)— ¢
a<$R,
c:=(—a-SkR+m, a)

Relin(rlk, c) =(c[0], c[1]) + c[2] - rlRk
Dec(sk, ¢)—»m = c[0] +sk - c[1]
Add(cy, c;)=c¢; + ¢,

Mul(c,, ¢,) = Relin(rlk, ¢, xc,)

Correctness -
Evaluation -
Compactness -

Public Key -

Security -

58



Fully Homomorphic Encryption

59

A simple scheme for intuition — Summary

R, = Z,[X]/(XN +1
IdealHE: o7 BlVEEED
KeyGen—(sR, rlR):
rlk = Enc(sk, sk?)
Sk =s «$R,

Enc(sk, me R;)— ¢
a<$R,
c:=(—a-sk+m, a)

Relin(rlk, c) =(c[0], c[1]) + c[2] - rlRk
Dec(sk, ¢)—»m = c[0] +sk - c[1]
Add(cy, c;)=c¢; + ¢,

Mul(c,, ¢,) = Relin(rlk, ¢, xc,)

Correctness - Yes
Evaluation - Additions and Multiplications

Compactness - with relinearization

Public Key - Yes, pk = Enc(sk,0) and u - pk to Enc for u « R,

Security -
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A simple scheme for intuition — Summary

R, = Z,[X]/(XN +1
IdealHE: o7 BETED
KeyGen—(sR, rlR):
rlk = Enc(sk, sk?)
Sk =s «$R,

Enc(sk, me R;)— ¢
a<$R,
c:=(—a-sk+m, a)

Relin(rlk, c) =(c[0], c[1]) + c[2] - rlRk
Dec(sk, ¢)—»m = c[0] +sk - c[1]
Add(cy, c;)=c¢; + ¢,

Mul(c,, ¢,) = Relin(rlk, ¢, xc,)

Correctness - Yes
Evaluation - Additions and Multiplications
Compactness - with relinearization

Public Key - Yes, pk = Enc(sk,0) and u - pk to Enc for u « R,

Security - No! The problem is not hard. We need the
error!



Lattice-Based Homomorphic Encryption
Background on lattices

A lattice is a mathematical object: a subset of R™ that is an additive subgroup and discrete

There exits many problems deemed hard related to lattices

e.g., Shortest Vector Problem: find non-zero vector of low norm [
- Large mathematical objects b,
: b
- Several lattice-based hard problems e ..
- Assumed quantum resistant for e
appropriate parametrization LA
pprop P L = {Zzib,' ’ Zi € Z}
i=1

Figure copied from Christian Mouchet’s Course on
Computing on Encrypted Data — HPI 2024



62

Ring learning with error
Inturtion

Define R, = Z,[X]/(X" + 1) Degree N — 1 polynomials with coefficients in Z,

Given a secret vector s € R, the RLWEZ_ distribution outputs:

(ab) = (a,as +e) € R
whered « R, and e « y m=poly(n), appropriate g, and y of errorrate a < 1

Cannot distinguish between RLWE%_ , and a uniform distribution



Ring learning with error-based FHE scheme
Issue with correctness

FHE:
KeyGen—(sk, -):

Rq = Zg[X1/(XN +1)

a,b <R,

Sk =5 «<$R,

Enc(sk, me R;)—

a<3$R,

C

c=(—a-sk+m, a)

Dec(sk, ¢)—»m = c[0] +sk - c[1]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Idea: add noise everywhere!
(a,b) = (a,as +e) € RZ withd « R, and e « y

Informal: RLWE assumption says this is
indistinguishable from (a,b « $ R,).



Ring learning with error-based FHE scheme
Issue with correctness

R,=Z [X]/(XN+1)
FHE: v
KeyGen—(sk, -):  a,b « R,
Sk =5 «<$R,

Enc(sk, me R;)— ¢
a < E];:Rq €enc < X
c=(—a-SR+e:+m, a)

Dec(sk, ¢)—»m = c[0] +sk - c[1]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Idea: add noise everywhere!
(a,b) = (a,as +e) € RZ withd « R, and e « y

Correctness —vske®R,and v me R,
Dec(sk, Enc(sk, m)) = (—a - SR + e . + M) +SkR - a
=(—as+eop.+M)+s-a

= €enctM #M

We need to perform error correction:
1. Message scaling
2. Noise scaling



Ring learning with error-based FHE scheme

Adding error correction - message scaling

Rq = Zg[X1/(XN +1)

FHE:
KeyGen—(sk, ): a,b <« R,
Sk =5 «<$R,

Enc(sk, me R;)— ¢
a < $ :Rq €enc < X
c:=(—a-SkR+e,.+Am, a)

Dec(sk, ¢)— m
M := ¢[0] +sk - c[1]
m := |M/A]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

Let A € Z, be a positive factor less than q.

If A > 2e and Am < g, then the division and
rounding remove the error.

We now have correctness again!



Ring learning with error-based FHE scheme

Adding error correction - message scaling

Ry = Zo[X]/(XV +1)

FHE:

—(sRk, ) a,b < R,
=S e$:Rq

(SR, me R,;)— ¢
aP$:Rq €enc < X
c:=(—a-SR+e,+Am, a)

(Sk, €)= m
M := ¢[0] +sk - c[1]
m := |M/A]

Let us look at the impact of the scale A

Consider the following representation of the
polynomial coefficients

Third coefficient
representation

MSB LSB




Ring learning with error-based FHE scheme

Adding error correction - message scaling

Ry = Zy[X1/(XN +1)
FHE:
—(sRk, ) a,b < R,

=S e$qu

(SR, me R,;)— ¢
aP$:Rq €enc < X
c=(—a-SR+e,+Am, a)

(Sk, €)= m
M := ¢[0] +sk - c[1]
m := |M/A]

Let us look at the impact of the scale

We display the scaled message m and the
encryption noise e,

Third coefficient
representation

MSB




Ring learning with error-based FHE scheme
Adding error correction — message scaling

R, = Z,[X]/(XN + 1)
FHE: .
—(sRk, ) a,b < R,
=S <—$qu

(SR, me R,;)— ¢
a(_$:Rq €enc < X
c=(—a-SR+e,+Am, a)

(Sk, €)= m
M := ¢[0] +sk - ¢[1]
m := |M/A]

Let us look at the impact of the scale

We now add the masking

Third coefficient
representation

MSB LSB




Ring learning with error-based FHE scheme
Adding error correction — message scaling and Ops

q A 0

c;+c,=

€add

The noise growth is linear in the #add in the worst case.

A? A

The noise growth is quadratically in the #mult in the worst case.
Output message scaled by A?




Ring learning with error-based FHE scheme
Adding error correction — message scaling and Ops

q A? A 0

:Rq - Zq[X]/(XN_I_]-) Ci1 X Cy=

€mul

FHE:

—(sRk, ) a,b < R,
=S « $:Rq .
What can we do? — Noise management
(SR, meR )—c
aﬁ$j€q €enc < X
c=(—a-SR+ey,.+2Am, a)

(Sk, €)= m
M := ¢[0] +sk - ¢[1]
m := |M/A]

Disclaimer: it is non-trivial to enable relinearization: use gadgets products




Ring learning with error-based FHE scheme

Adding error correction — message scaling and Ops

R,=Z [X]/(XN+1)
FHE: v
KeyGen—(sk, ): a,b <« R,
Sk =5 «<$R,

Enc(sk, me R;)— ¢
a < $ :Rq €enc < X
c:=(—a-SkR+ec+20m, a)

Dec(sk, ¢)— m
M := ¢[0] +sk - ¢[1]
m := |M/A]

For simplicity, the relinearization and PKE have been omitted. In practice,
Disclaimer: it is non-trivial to enable relinearization: use gadgets products

C X Cy=

q A? A 0

€mul

What can we do? - Noise management

1. Select 4 wisely:
Encrypt messages in R;, t < q.Set A = [%]

q A 0
MSB LSB

2. Rescale from A? needed (multiply by 2 in R)

3. Perform noise refresh: Bootstrapping
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Ring learning with error-based FHE scheme

summary

Correctness - Yes
Evaluation - Additions and Multiplications
Compactness - with relinearization

Security - RLWE assumption

Note:

- Modulus q is large: decompose it in smaller
primes (Chinese remainder Theorem)

- Plaintext space is R;: batch N values in Z,

FHE: Ry = Zy[X]/ (XY + 1)

KeyGen— (SR, pR, rlk):
Sk =5 <$R,
rlk = GenRLK(sR) rlk = GenPK(sR)

Enc(sk, me R,)— ¢
a<—$:RCI €enc < X, A= l%-l
c:=(—a-SskR+e. . +Am, a)

POssipg 7Re|in(rlk, ¢) ¢

Dec(sk, ¢)—»m
Add(c;, c,)=c¢; + ¢,

Mul(c;, ¢,) = Relin(rlR,R (¢, xc,)/A)

— By selecting appropriate parameters, enable
fast multiplication and SIMD

SIMD: single input multiple data




FHE In Practice

Challenges

1.

€A

+
1

X
°

=

I I

W

2.
O

Selecting cryptographic parameters
Interdependencies between N, q,t, and y
Relies on estimators to assess the hardness

Circuit definition

How to represent functions into circuits

Minimize the multiplicative depth

Optimize the costly operations (bootstrap, rescale, etc.)

Bearing with the costs
FHE induces both computation and communication overhead
Not all plaintexts space can be easily handled

73

Naive operation

(((mq-my) -mz)-my )

+e2

+e3

Optimization

(.(m1 - my) ;(m3 ‘ m4)?



https://github.com/malb/lattice-estimator

FHE In Practice

Parameterization
= Dimension N: between 2" and 26 polynomial size (keys, ciphertexts)
= Ciphertext space: R, with g 100s of bits coefficient size of ciphertexts

= Message space: t application dependent  can be a small as 20 bits

Example: compute Squared Distance between two 2D
= [og N =13, log q =218, log t = 16

= One ciphertext: 450kB

= Setup: 7.4 ms

= Encode + Enc 1 vector: 2.7 ms

= Eval: 7 ms

= Dec + Decode: 2 ms
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FHE In Practice '
Extension to malicious models 8

[l g
&‘

Malicious threat model?
So far, the evaluator can only evaluate the function on the input it receives.

In reality, evaluator could be:

 Honest but Curious: Parties will follow the HE protocol honestly, but try to learn as
much as possible from the messages they receive

« Malicious: Parties can arbitrarily deviate from the HE protocol to learn as much as
possible

= Requires heavy machinery e.g., Zero-Knowledge Proofs
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Homomorphic Encryption

Conclusion

Enables computation over
encryption

Has become increasingly
practical

Modern lattice-based
schemes plausibly quantum
resistant

HE scheme:
KeyGen(1¥)—(sR, pk)
Enc(pk, m; r)— ¢
Dec(sk, ¢)—m

Eval(pk, f, C1,...,Cn)—>Cf()

Eval(pR,f, c)

T cfm)

f(m)«—{Dec(sk, -

Challenges:

AN

Parameters Plaintext
selection encoding

=2 .
i BNEnEE

Amortization

Circuit Noise
design management



References
Software Libraries

= [HELlib] https://github.com/shaih/HElib Halevi and Shoup
= [SEAL] https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-

library/ SEAL

= [NFLlib] https://github.com/quarkslab/NFLlib French consortium

= [HEAAN] https://github.com/kimandrik/HEAAN Korean researchers

= [TFHE] https://tfhe.github.io/tfhe/ inpher + French researchers

= [PALISADE] https://git.njit.edu/palisade/PALISADE New Jersey Institute of Technology
= [cuHE] https://github.com/vernamlab/cuHE

= [Lattigo] https://github.com/tuneinsight/lattigo

= [OpenFHE] https://openfhe.org/

= [THFE-rs] https://docs.zama.ai/tfhe-rs

78


https://github.com/shaih/HElib
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://www.microsoft.com/en-us/research/project/simple-encrypted-arithmetic-library/
https://github.com/quarkslab/NFLlib
https://github.com/kimandrik/HEAAN
https://tfhe.github.io/tfhe/
https://git.njit.edu/palisade/PALISADE
https://github.com/vernamlab/cuHE
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo
https://github.com/ldsec/lattigo

